This HTML5 document contains 86 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n21https://zbmath.org/%3Fformat=complete&q=an:
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
dbpedia-hehttp://he.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
n23https://eudml.org/doc/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n16https://www.ams.org/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Rellich–Kondrachov_theorem
rdf:type
yago:Space100028651 yago:Proposition106750804 yago:Communication100033020 yago:WikicatTheoremsInFunctionalAnalysis yago:WikicatSobolevSpaces yago:WikicatTheoremsInAnalysis yago:Attribute100024264 yago:Theorem106752293 yago:Statement106722453 yago:Message106598915 yago:Abstraction100002137
rdfs:label
Rellich–Kondrachov theorem Teorema di Rellich-Kondrakov レリッヒ=コンドラショフの定理 Théorème de Rellich
rdfs:comment
Le théorème de Rellich-Kondrachov est un théorème d'analyse, la branche des mathématiques qui est constituée du calcul différentiel et intégral et des domaines associés. 数学におけるレリッヒ=コンドラショフの定理(レリッヒ=コンドラショフのていり、英: Rellich–Kondrachov theorem)とは、ソボレフ空間に関するコンパクトな埋め込みについての定理である。イタリアおよびオーストリアの数学者であると、ロシアの数学者であるウラジミール・イオシフォヴィチ・コンドラショフの名にちなむ。レリッヒは L2 の場合の定理を証明し、コンドラショフは Lp の場合を証明した。 In matematica, il teorema di Rellich-Kondrachov è un risultato relativo all'immersione compatta in spazi di Sobolev. Il nome del teorema è dovuto a Franz Rellich e Vladimir Iosifovich Kondrashov: Rellich mostrò il teorema in spazi , mentre Kondrashov fornì il caso di . In mathematics, the Rellich–Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the Austrian-German mathematician Franz Rellich and the Russian mathematician Vladimir Iosifovich Kondrashov. Rellich proved the L2 theorem and Kondrashov the Lp theorem.
dcterms:subject
dbc:Theorems_in_analysis dbc:Sobolev_spaces
dbo:wikiPageID
7907151
dbo:wikiPageRevisionID
1083192479
dbo:wikiPageWikiLink
dbr:Completely_continuous dbr:Lp_space dbc:Theorems_in_analysis dbr:Zentralblatt_MATH dbr:Open_set dbr:Bounded_set dbr:Lipschitz_domain dbr:Continuously_embedded dbc:Sobolev_spaces dbr:Multivalued_function dbr:Compactly_embedded dbr:Vladimir_Iosifovich_Kondrashov dbr:Mathematics dbr:Mathematical_Reviews dbr:Compact_operator dbr:Franz_Rellich dbr:Sobolev_space dbr:Graduate_Studies_in_Mathematics dbr:Poincaré_inequality dbr:Theorem
dbo:wikiPageExternalLink
n16:mathscinet-getitem%3Fmr=2527916 n21:1180.46001 n23:59297
owl:sameAs
wikidata:Q3527151 dbpedia-it:Teorema_di_Rellich-Kondrakov dbpedia-ja:レリッヒ=コンドラショフの定理 n18:3FTh9 dbpedia-fr:Théorème_de_Rellich dbpedia-he:משפט_רליך-קונדרשוב freebase:m.026jm9c
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Cite_book dbt:Math dbt:ISBN
dbo:abstract
Le théorème de Rellich-Kondrachov est un théorème d'analyse, la branche des mathématiques qui est constituée du calcul différentiel et intégral et des domaines associés. 数学におけるレリッヒ=コンドラショフの定理(レリッヒ=コンドラショフのていり、英: Rellich–Kondrachov theorem)とは、ソボレフ空間に関するコンパクトな埋め込みについての定理である。イタリアおよびオーストリアの数学者であると、ロシアの数学者であるウラジミール・イオシフォヴィチ・コンドラショフの名にちなむ。レリッヒは L2 の場合の定理を証明し、コンドラショフは Lp の場合を証明した。 In matematica, il teorema di Rellich-Kondrachov è un risultato relativo all'immersione compatta in spazi di Sobolev. Il nome del teorema è dovuto a Franz Rellich e Vladimir Iosifovich Kondrashov: Rellich mostrò il teorema in spazi , mentre Kondrashov fornì il caso di . In mathematics, the Rellich–Kondrachov theorem is a compact embedding theorem concerning Sobolev spaces. It is named after the Austrian-German mathematician Franz Rellich and the Russian mathematician Vladimir Iosifovich Kondrashov. Rellich proved the L2 theorem and Kondrashov the Lp theorem.
gold:hypernym
dbr:Theorem
prov:wasDerivedFrom
wikipedia-en:Rellich–Kondrachov_theorem?oldid=1083192479&ns=0
dbo:wikiPageLength
4237
foaf:isPrimaryTopicOf
wikipedia-en:Rellich–Kondrachov_theorem
Subject Item
dbr:Franz_Rellich
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbp:knownFor
dbr:Rellich–Kondrachov_theorem
dbo:knownFor
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Continuous_embedding
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Sobolev_inequality
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Fréchet–Kolmogorov_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Laplace_operator
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Vladimir_Iosifovich_Kondrashov
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich-Kondrachov_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich-Kondrachov_compactness_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich-Kondrakov_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich_lemma
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich_selection_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
dbr:Rellich_theorem
dbo:wikiPageWikiLink
dbr:Rellich–Kondrachov_theorem
dbo:wikiPageRedirects
dbr:Rellich–Kondrachov_theorem
Subject Item
wikipedia-en:Rellich–Kondrachov_theorem
foaf:primaryTopic
dbr:Rellich–Kondrachov_theorem