This HTML5 document contains 68 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Path_ordering_(term_rewriting)
rdf:type
yago:Artifact100021939 yago:PhysicalEntity100001930 dbo:Eukaryote yago:Object100002684 yago:Whole100003553 yago:WikicatRewritingSystems yago:System104377057 yago:Instrumentality103575240
rdfs:label
Path ordering (term rewriting)
rdfs:comment
In theoretical computer science, in particular in term rewriting, a path ordering is a well-founded strict total order (>) on the set of all terms such that f(...) > g(s1,...,sn) if f .> g and f(...) > si for i=1,...,n, where (.>) is a user-given total precedence order on the set of all function symbols. Intuitively, a term f(...) is bigger than any term g(...) built from terms si smaller than f(...) using alower-precedence root symbol g.In particular, by structural induction, a term f(...) is bigger than any term containing only symbols smaller than f. The latter variations include:
dct:subject
dbc:Order_theory dbc:Rewriting_systems
dbo:wikiPageID
42973489
dbo:wikiPageRevisionID
1119587803
dbo:wikiPageWikiLink
dbr:Veblen_function dbr:Ackermann_function dbc:Rewriting_systems dbr:Termination_(term_rewriting) dbr:Structural_induction dbr:Reflexive_closure dbr:Well-founded dbr:Wilhelm_Ackermann dbc:Order_theory dbr:Term_(logic) dbr:Successor_function dbr:Reduction_ordering dbr:Strict_total_order dbr:Higher-order_function dbr:Multiset dbr:Continuous_function_(set_theory) dbr:Term_rewriting dbr:Elementary_algebra dbr:General_recursive_function dbr:Irreflexive dbr:Transitive_relation dbr:Knuth–Bendix_completion_algorithm dbr:Theoretical_computer_science dbr:Lexicographical_order dbr:Ackermann_ordinal
owl:sameAs
yago-res:Path_ordering_(term_rewriting) wikidata:Q18386969 freebase:m.010rz80_ n18:n1zy
dbp:wikiPageUsesTemplate
dbt:Su dbt:Reflist dbt:Redirect
dbp:b
i=0
dbo:abstract
In theoretical computer science, in particular in term rewriting, a path ordering is a well-founded strict total order (>) on the set of all terms such that f(...) > g(s1,...,sn) if f .> g and f(...) > si for i=1,...,n, where (.>) is a user-given total precedence order on the set of all function symbols. Intuitively, a term f(...) is bigger than any term g(...) built from terms si smaller than f(...) using alower-precedence root symbol g.In particular, by structural induction, a term f(...) is bigger than any term containing only symbols smaller than f. A path ordering is often used as reduction ordering in term rewriting, in particular in the Knuth–Bendix completion algorithm.As an example, a term rewriting system for "multiplying out" mathematical expressions could contain a rule x*(y+z) → (x*y) + (x*z). In order to prove termination, a reduction ordering (>) must be found with respect to which the term x*(y+z) is greater than the term (x*y)+(x*z). This is not trivial, since the former term contains both fewer function symbols and fewer variables than the latter. However, setting the precedence (*) .> (+), a path ordering can be used, since both x*(y+z) > x*y and x*(y+z) > x*z is easy to achieve. There may also be systems for certain general recursive functions, for example a system for the Ackermann function may contain the rule A(a+, b+) → A(a, A(a+, b)), where b+ denotes the successor of b. Given two terms s and t, with a root symbol f and g, respectively, to decide their relation their root symbols are compared first. * If f <. g, then s can dominate t only if one of s's subterms does. * If f .> g, then s dominates t if s dominates each of t's subterms. * If f = g, then the immediate subterms of s and t need to be compared recursively. Depending on the particular method, different variations of path orderings exist. The latter variations include: * the multiset path ordering (mpo), originally called recursive path ordering (rpo) * the lexicographic path ordering (lpo) * a combination of mpo and lpo, called recursive path ordering by Dershowitz, Jouannaud (1990) Dershowitz, Okada (1988) list more variants, and relate them to Ackermann's system of ordinal notations. In particular, an upper bound given on the order types of recursive path orderings with n function symbols is φ(n,0), using Veblen's function for large countable ordinals.
gold:hypernym
dbr:Order
prov:wasDerivedFrom
wikipedia-en:Path_ordering_(term_rewriting)?oldid=1119587803&ns=0
dbo:wikiPageLength
7642
foaf:isPrimaryTopicOf
wikipedia-en:Path_ordering_(term_rewriting)
Subject Item
dbr:MPO_(term_rewriting)
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Rewriting
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Nachum_Dershowitz
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Recursive_path_ordering
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:LPO_(term_rewriting)
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Multiset_path_ordering
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Lexicographic_path_ordering
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:Veblen_function
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
Subject Item
dbr:RPO_(term_rewriting)
dbo:wikiPageWikiLink
dbr:Path_ordering_(term_rewriting)
dbo:wikiPageRedirects
dbr:Path_ordering_(term_rewriting)
Subject Item
wikipedia-en:Path_ordering_(term_rewriting)
foaf:primaryTopic
dbr:Path_ordering_(term_rewriting)