This HTML5 document contains 84 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://books.google.com/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Neural_network
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Estimation_theory
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Data_analysis
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Nonlinear_system_identification
rdf:type
yago:DynamicalSystem106246361 yago:Space100028651 dbo:Software yago:Abstraction100002137 yago:WikicatDynamicalSystems yago:WikicatNonlinearSystems yago:Group100031264 yago:PhaseSpace100029114 yago:Attribute100024264 yago:NonlinearSystem108435246 yago:System108435388
rdfs:label
Nonlinear system identification
rdfs:comment
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more. 1. * Volterra series models, 2. * Block-structured models, 3. * Neural network models, 4. * NARMAX models, and 5. * State-space models.
dct:subject
dbc:Nonlinear_systems dbc:Dynamical_systems
dbo:wikiPageID
40158142
dbo:wikiPageRevisionID
1118525242
dbo:wikiPageWikiLink
dbr:Stochastic_process dbr:Industrial_process dbc:Nonlinear_systems dbr:Wavelets dbr:Approximation dbr:Principal_component_analysis dbr:Nonlinear_system dbr:Maximum_likelihood_estimation dbr:Feature_selection dbr:Chaos_theory dbr:Mathematical_model dbr:Subharmonics dbr:Convolution dbr:Bifurcation_theory dbr:Biology dbr:Social_system dbr:State-space_representation dbr:Volterra_series dbr:Control_system dbr:Economic_data dbr:Class_(set_theory) dbr:Pattern_recognition dbr:Weierstrass dbr:Particle_filter dbc:Dynamical_systems dbr:System_identification dbr:Statistical_Model dbr:System dbr:Wiener_series dbr:Superposition_principle dbr:Supervised_learning dbr:Independence_(probability_theory) dbr:Noise dbr:Life_sciences dbr:Medicine dbr:Neural_network dbr:Grey_box_model dbr:Likelihood_function dbr:Expectation–maximization_algorithm dbr:Artificial_neural_networks
dbo:wikiPageExternalLink
n14:books%3Fid=Os7nCwAAQBAJ&printsec=frontcover%23v=onepage&q&f=false n14:books%3Fid=1O7lBwAAQBAJ&printsec=frontcover%23v=onepage&q&f=false
owl:sameAs
freebase:m.0wy1y8q n15:ftoG dbpedia-fa:شناسایی_سیستم_غیرخطی yago-res:Nonlinear_system_identification wikidata:Q17080460
dbp:wikiPageUsesTemplate
dbt:Portal dbt:Reflist dbt:ISBN
dbo:abstract
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more. A nonlinear system is defined as any system that is not linear, that is any system that does not satisfy the superposition principle. This negative definition tends to obscure that there are very many different types of nonlinear systems. Historically, system identification for nonlinear systems has developed by focusing on specific classes of system and can be broadly categorized into five basic approaches, each defined by a model class: 1. * Volterra series models, 2. * Block-structured models, 3. * Neural network models, 4. * NARMAX models, and 5. * State-space models. There are four steps to be followed for system identification: data gathering, model postulate, parameter identification and model validation. Data gathering is considered as the first and essential part in identification terminology, used as the input for the model which is prepared later. It consists of selecting an appropriate data set, pre-processing and processing. It involves the implementation of the known algorithms together with the transcription of flight tapes, data storage and data management, calibration, processing, analysis and presentation. Moreover, model validation is necessary to gain confidence in, or reject, a particular model. In particular, the parameter estimation and the model validation are integral parts of the system identification. Validation refers to the process of confirming the conceptual model and demonstrating an adequate correspondence between the computational results of the model and the actual data.
gold:hypernym
dbr:Method
prov:wasDerivedFrom
wikipedia-en:Nonlinear_system_identification?oldid=1118525242&ns=0
dbo:wikiPageLength
23531
foaf:isPrimaryTopicOf
wikipedia-en:Nonlinear_system_identification
Subject Item
dbr:Big_data
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Black_box_model_of_power_converter
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Digital_signal_processing
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Grey_box_model
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Ordinary_least_squares
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:System_identification
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Mathematical_model
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
dbr:Nonlinear_system
dbo:wikiPageWikiLink
dbr:Nonlinear_system_identification
Subject Item
wikipedia-en:Nonlinear_system_identification
foaf:primaryTopic
dbr:Nonlinear_system_identification