This HTML5 document contains 66 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13http://tl.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Amir_Hussain_(cognitive_scientist)
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Natural_language_processing
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Multimodal_emotion_recognition
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
dbo:wikiPageRedirects
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Emotion_recognition
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Emotion_recognition_in_conversation
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Affective_computing
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Artificial_intelligence
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Recommender_system
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Sentiment_analysis
dbo:wikiPageWikiLink
dbr:Multimodal_sentiment_analysis
Subject Item
dbr:Multimodal_sentiment_analysis
rdfs:label
Multimodal sentiment analysis
rdfs:comment
Multimodal sentiment analysis is a new dimension of the traditional text-based sentiment analysis, which goes beyond the analysis of texts, and includes other modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others.
dcterms:subject
dbc:Affective_computing dbc:Machine_learning dbc:Social_media dbc:Multimodal_interaction dbc:Natural_language_processing
dbo:wikiPageID
57687371
dbo:wikiPageRevisionID
1103913429
dbo:wikiPageWikiLink
dbr:Spectral_flux dbr:N-gram dbr:Natural_language_processing dbc:Machine_learning dbr:Smile dbr:Machine_learning dbr:Social_media_analytics dbr:Phonetic dbr:Facial_expression dbr:Spectral_centroid dbc:Affective_computing dbr:Classification dbr:Praat dbr:Sentiment_analysis dbr:Emotion dbr:Bag-of-words dbr:Mel-frequency_cepstrum dbr:Pitch_accent dbr:Virtual_assistant dbr:Recommender_system dbr:Anxiety dbr:Emotion_recognition dbr:Depression_(mood) dbr:N-grams dbr:OpenSMILE dbr:Feature_engineering dbc:Multimodal_interaction dbr:Prosodic dbr:Modality_(human–computer_interaction) dbc:Social_media dbr:Data_fusion dbr:Psychological_stress dbc:Natural_language_processing dbr:Algorithm dbr:Social_media dbr:Feeling
owl:sameAs
wikidata:Q55008106 n13:Maramihang_Modalidad_na_Pagsusuri_ng_Damdamin dbpedia-fa:تحلیل_احساسات_چند_وجهی n16:61ZFq
dbp:wikiPageUsesTemplate
dbt:Peacock_term dbt:Reflist
dbo:abstract
Multimodal sentiment analysis is a new dimension of the traditional text-based sentiment analysis, which goes beyond the analysis of texts, and includes other modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others. Similar to the traditional sentiment analysis, one of the most basic task in multimodal sentiment analysis is sentiment classification, which classifies different sentiments into categories such as positive, negative, or neutral. The complexity of analyzing text, audio, and visual features to perform such a task requires the application of different fusion techniques, such as feature-level, decision-level, and hybrid fusion. The performance of these fusion techniques and the classification algorithms applied, are influenced by the type of textual, audio, and visual features employed in the analysis.
prov:wasDerivedFrom
wikipedia-en:Multimodal_sentiment_analysis?oldid=1103913429&ns=0
dbo:wikiPageLength
15375
foaf:isPrimaryTopicOf
wikipedia-en:Multimodal_sentiment_analysis
Subject Item
wikipedia-en:Multimodal_sentiment_analysis
foaf:primaryTopic
dbr:Multimodal_sentiment_analysis