This HTML5 document contains 93 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n12http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n6http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Sampling_(signal_processing)
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Box_spline
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Moiré_pattern
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Multidimensional_sampling
rdf:type
yago:Statement106722453 yago:Abstraction100002137 yago:Message106598915 dbo:Election yago:WikicatTheoremsInFourierAnalysis yago:Communication100033020 yago:Proposition106750804 yago:Theorem106752293
rdfs:label
Multidimensional sampling
rdfs:comment
In digital signal processing, multidimensional sampling is the process of converting a function of a into a discrete collection of values of the function measured on a discrete set of points. This article presents the basic result due to Petersen and Middleton on conditions for perfectly reconstructing a wavenumber-limited function from its measurements on a discrete lattice of points. This result, also known as the Petersen–Middleton theorem, is a generalization of the Nyquist–Shannon sampling theorem for sampling one-dimensional band-limited functions to higher-dimensional Euclidean spaces.
foaf:depiction
n6:Hexagonal_sampling_lattice.png n6:Unaliased_sampled_spectrum_in_2D.png n6:Reciprocal_lattice.png n6:Moire_pattern_of_bricks.jpg n6:Moire_pattern_of_bricks_small.jpg n6:Aliased_sampled_spectrum_in_2D.png
dct:subject
dbc:Multidimensional_signal_processing dbc:Theorems_in_Fourier_analysis dbc:Digital_signal_processing
dbo:wikiPageID
35614495
dbo:wikiPageRevisionID
1107375985
dbo:wikiPageWikiLink
dbr:Hexagonal_lattice dbr:Fourier_transform dbr:Euclidean_space dbr:Interpolation dbr:Moiré_pattern dbr:Finite_impulse_response dbr:Parallelepiped dbr:Multidimensional_variable dbr:Sinc dbr:Discrete-time_Fourier_transform dbr:Lattice_(group) dbr:B-splines dbr:Digital_signal_processing n12:Moire_pattern_of_bricks.jpg n12:Moire_pattern_of_bricks_small.jpg n12:Hexagonal_sampling_lattice.png n12:Aliased_sampled_spectrum_in_2D.png dbr:Brillouin_zone dbc:Multidimensional_signal_processing n12:Unaliased_sampled_spectrum_in_2D.png dbr:Inner_product dbr:Vector_(mathematics) dbr:Band-limited dbr:Isotropy dbr:Aliasing dbr:Zonohedron dbr:Bandlimiting dbr:Nyquist–Shannon_sampling_theorem dbc:Theorems_in_Fourier_analysis dbr:Basis_(linear_algebra) dbr:Indicator_function dbr:Reconstruction_filter dbr:Box_spline dbr:Close-packing_of_equal_spheres dbr:Whittaker–Shannon_interpolation_formula n12:Reciprocal_lattice.png dbc:Digital_signal_processing dbr:Square_lattice dbr:Lanczos_filter dbr:Poisson_summation_formula dbr:Reciprocal_lattice dbr:Wavenumber dbr:Sphere_packing dbr:Periodic_summation
owl:sameAs
wikidata:Q6934659 yago-res:Multidimensional_sampling n19:4sCRW freebase:m.0jkwg5w
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Main dbt:EquationRef dbt:NumBlk dbt:DSP dbt:No_footnotes
dbo:thumbnail
n6:Hexagonal_sampling_lattice.png?width=300
dbo:abstract
In digital signal processing, multidimensional sampling is the process of converting a function of a into a discrete collection of values of the function measured on a discrete set of points. This article presents the basic result due to Petersen and Middleton on conditions for perfectly reconstructing a wavenumber-limited function from its measurements on a discrete lattice of points. This result, also known as the Petersen–Middleton theorem, is a generalization of the Nyquist–Shannon sampling theorem for sampling one-dimensional band-limited functions to higher-dimensional Euclidean spaces. In essence, the Petersen–Middleton theorem shows that a wavenumber-limited function can be perfectly reconstructed from its values on an infinite lattice of points, provided the lattice is fine enough. The theorem provides conditions on the lattice under which perfect reconstruction is possible. As with the Nyquist–Shannon sampling theorem, this theorem also assumes an idealization of any real-world situation, as it only applies to functions that are sampled over an infinitude of points. Perfect reconstruction is mathematically possible for the idealized model but only an approximation for real-world functions and sampling techniques, albeit in practice often a very good one.
gold:hypernym
dbr:Process
prov:wasDerivedFrom
wikipedia-en:Multidimensional_sampling?oldid=1107375985&ns=0
dbo:wikiPageLength
15487
foaf:isPrimaryTopicOf
wikipedia-en:Multidimensional_sampling
Subject Item
dbr:Fast_Algorithms_for_Multidimensional_Signals
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Hexagonal_sampling
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Papoulis-Marks-Cheung_Approach
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Non-separable_wavelet
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
Subject Item
dbr:Petersen-Middleton_theorem
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
dbo:wikiPageRedirects
dbr:Multidimensional_sampling
Subject Item
dbr:Petersen–Middleton_theorem
dbo:wikiPageWikiLink
dbr:Multidimensional_sampling
dbo:wikiPageRedirects
dbr:Multidimensional_sampling
Subject Item
wikipedia-en:Multidimensional_sampling
foaf:primaryTopic
dbr:Multidimensional_sampling