This HTML5 document contains 73 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n10http://www.math.harvard.edu/~lurie/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n19http://www.math.northwestern.edu/~pgoerss/papers/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n9http://math.wesleyan.edu/~mhovey/papers/kn.ps%7Carchive-url=https:/web.archive.org/web/20041207115433/http:/math.wesleyan.edu/~mhovey/papers/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Elliptic_cohomology
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Landweber_exact_functor_theorem
rdf:type
yago:Theorem106752293 yago:Message106598915 yago:Statement106722453 yago:Proposition106750804 yago:WikicatTheoremsInAlgebraicTopology yago:Communication100033020 yago:Abstraction100002137
rdfs:label
Landweber exact functor theorem
rdfs:comment
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
dcterms:subject
dbc:Theorems_in_algebraic_topology
dbo:wikiPageID
28686098
dbo:wikiPageRevisionID
1095502035
dbo:wikiPageWikiLink
dbr:Algebraic_stack dbr:Morava_K-theory dbr:CW-complex dbr:Lazard_ring dbr:Homology_theory dbr:Topological_K-theory dbr:P-divisible_group dbr:Brown–Peterson_cohomology dbr:Memoirs_of_the_American_Mathematical_Society dbr:Highly_structured_ring_spectrum dbc:Theorems_in_algebraic_topology dbr:Complex_cobordism dbr:Stack_(mathematics) dbr:Étale_topology dbr:American_Journal_of_Mathematics dbr:Formal_group_law dbr:Complex_orientation dbr:Topological_modular_forms dbr:Todd_genus dbr:Peter_Landweber dbr:Lubin–Tate_spectra dbr:Spectrum_(homotopy_theory) dbr:Jacob_Lurie dbr:Coherent_sheaf dbr:Topological_space dbr:Daniel_Quillen dbr:Algebraic_topology dbr:Johnson–Wilson_theory dbr:Elliptic_cohomology dbr:Chromatic_homotopy_theory dbr:Flat_module dbr:Formal_group dbr:Regular_sequence_(algebra)
dbo:wikiPageExternalLink
n9:kn.ps%7Curl-status=dead%7Carchive-date=2004-12-07%7Ctitle= n10:252x.html%7Ctitle= n19:banff.pdf%7Ctitle=
owl:sameAs
yago-res:Landweber_exact_functor_theorem wikidata:Q17003613 freebase:m.0cz8nj7 n18:fCZu
dbp:wikiPageUsesTemplate
dbt:Cite_web dbt:Cite_journal dbt:No_footnotes dbt:Short_description dbt:Citation
dbo:abstract
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem (or LEFT for short) can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
gold:hypernym
dbr:Theorem
prov:wasDerivedFrom
wikipedia-en:Landweber_exact_functor_theorem?oldid=1095502035&ns=0
dbo:wikiPageLength
8073
foaf:isPrimaryTopicOf
wikipedia-en:Landweber_exact_functor_theorem
Subject Item
dbr:Chromatic_homotopy_theory
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Homotopy_theory
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Exactness
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Landweber_exact_formal_group_law
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
dbo:wikiPageRedirects
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Landweber_exactness_theorem
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
dbo:wikiPageRedirects
dbr:Landweber_exact_functor_theorem
Subject Item
dbr:Exact_functor_theorem
dbo:wikiPageWikiLink
dbr:Landweber_exact_functor_theorem
dbo:wikiPageRedirects
dbr:Landweber_exact_functor_theorem
Subject Item
wikipedia-en:Landweber_exact_functor_theorem
foaf:primaryTopic
dbr:Landweber_exact_functor_theorem