This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hsu-Robbins-Erdos_theorem
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
dbo:wikiPageRedirects
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Hsu-Robbins-Erdős_theorem
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
dbo:wikiPageRedirects
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Hsu-Robbins-Erdős_Theorem
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
dbo:wikiPageRedirects
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Hsu–Robbins–Erdos_theorem
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
dbo:wikiPageRedirects
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Hsu–Robbins–Erdős_Theorem
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
dbo:wikiPageRedirects
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Pao-Lu_Hsu
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:Hsu–Robbins–Erdős_theorem
rdf:type
yago:Theorem106752293 yago:WikicatProbabilityTheorems yago:Proposition106750804 yago:Statement106722453 yago:Message106598915 yago:Abstraction100002137 yago:Communication100033020
rdfs:label
Hsu–Robbins–Erdős theorem
rdfs:comment
In the mathematical theory of probability, the Hsu–Robbins–Erdős theorem states that if is a sequence of i.i.d. random variables with zero mean and finite variance and then for every . The result was proved by Pao-Lu Hsu and Herbert Robbins in 1947. Since then, many authors extended this result in several directions.
dcterms:subject
dbc:Theorems_in_measure_theory dbc:Probabilistic_inequalities
dbo:wikiPageID
42381742
dbo:wikiPageRevisionID
644003580
dbo:wikiPageWikiLink
dbr:Probability_theory dbr:Borel–Cantelli_lemma dbc:Theorems_in_measure_theory dbr:Mathematics dbr:Pao-Lu_Hsu dbc:Probabilistic_inequalities dbr:Paul_Erdős dbr:Law_of_large_numbers dbr:Herbert_Robbins dbr:Random_variable
owl:sameAs
n12:fJCR wikidata:Q17027747 freebase:m.0105kfkv
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
In the mathematical theory of probability, the Hsu–Robbins–Erdős theorem states that if is a sequence of i.i.d. random variables with zero mean and finite variance and then for every . The result was proved by Pao-Lu Hsu and Herbert Robbins in 1947. This is an interesting strengthening of the classical strong law of large numbers in the direction of the Borel–Cantelli lemma. The idea of such a result is probably due to Robbins, but the method of proof is vintage Hsu. Hsu and Robbins further conjectured in that the condition of finiteness of the variance of is also a necessary condition for to hold. Two years later, the famed mathematician Paul Erdős proved the conjecture. Since then, many authors extended this result in several directions.
prov:wasDerivedFrom
wikipedia-en:Hsu–Robbins–Erdős_theorem?oldid=644003580&ns=0
dbo:wikiPageLength
1767
foaf:isPrimaryTopicOf
wikipedia-en:Hsu–Robbins–Erdős_theorem
Subject Item
dbr:List_of_things_named_after_Paul_Erdős
dbo:wikiPageWikiLink
dbr:Hsu–Robbins–Erdős_theorem
Subject Item
wikipedia-en:Hsu–Robbins–Erdős_theorem
foaf:primaryTopic
dbr:Hsu–Robbins–Erdős_theorem