This HTML5 document contains 48 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Current_(mathematics)
dbo:wikiPageWikiLink
dbr:Homological_integration
Subject Item
dbr:Geometric_integration
dbo:wikiPageWikiLink
dbr:Homological_integration
Subject Item
dbr:Homological_integration
rdf:type
yago:Communication100033020 yago:Statement106722453 yago:Explanation106738281 yago:Definition106744396 yago:Abstraction100002137 yago:WikicatDefinitionsOfMathematicalIntegration yago:Message106598915
rdfs:label
Homological integration
rdfs:comment
In the mathematical fields of differential geometry and geometric measure theory, homological integration or geometric integration is a method for extending the notion of the integral to manifolds. Rather than functions or differential forms, the integral is defined over currents on a manifold. Under this duality pairing, the exterior derivative goes over to a boundary operator defined by for all α ∈ Ωk. This is a homological rather than cohomological construction.
dcterms:subject
dbc:Definitions_of_mathematical_integration dbc:Measure_theory
dbo:wikiPageID
23029956
dbo:wikiPageRevisionID
764394117
dbo:wikiPageWikiLink
dbr:Geometric_measure_theory dbr:Oxford_University_Press dbc:Measure_theory dbr:Exterior_derivative dbr:Cohomology_theory dbr:Integral dbc:Definitions_of_mathematical_integration dbr:Mathematics dbr:Manifold dbr:Differential_form dbr:Differential_geometry dbr:Princeton_University_Press dbr:Distribution_(mathematics) dbr:Boundary_operator dbr:Lebesgue_integral dbr:Current_(mathematics) dbr:Dual_space
owl:sameAs
n6:4muN7 yago-res:Homological_integration wikidata:Q5891419 freebase:m.064m9dw
dbp:wikiPageUsesTemplate
dbt:Math dbt:Citation dbt:Mvar dbt:About dbt:Geometry-stub
dbo:abstract
In the mathematical fields of differential geometry and geometric measure theory, homological integration or geometric integration is a method for extending the notion of the integral to manifolds. Rather than functions or differential forms, the integral is defined over currents on a manifold. The theory is "homological" because currents themselves are defined by duality with differential forms. To wit, the space Dk of k-currents on a manifold M is defined as the dual space, in the sense of distributions, of the space of k-forms Ωk on M. Thus there is a pairing between k-currents T and k-forms α, denoted here by Under this duality pairing, the exterior derivative goes over to a boundary operator defined by for all α ∈ Ωk. This is a homological rather than cohomological construction.
prov:wasDerivedFrom
wikipedia-en:Homological_integration?oldid=764394117&ns=0
dbo:wikiPageLength
2189
foaf:isPrimaryTopicOf
wikipedia-en:Homological_integration
Subject Item
dbr:Geometric_integration_theory
dbo:wikiPageWikiLink
dbr:Homological_integration
dbo:wikiPageRedirects
dbr:Homological_integration
Subject Item
wikipedia-en:Homological_integration
foaf:primaryTopic
dbr:Homological_integration