This HTML5 document contains 70 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
n16http://erikdemaine.org/papers/GenApprox_SODA2005/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n13http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:End_(graph_theory)
dbo:wikiPageWikiLink
dbr:Halin's_grid_theorem
Subject Item
dbr:Julia_Chuzhoy
dbo:wikiPageWikiLink
dbr:Halin's_grid_theorem
Subject Item
dbr:Halin's_grid_theorem
rdf:type
yago:VisualCommunication106873252 yago:Abstraction100002137 yago:Communication100033020 yago:WikicatInfiniteGraphs yago:Graph107000195
rdfs:label
Halin's grid theorem
rdfs:comment
In graph theory, a branch of mathematics, Halin's grid theorem states that the infinite graphs with thick ends are exactly the graphs containing subdivisions of the hexagonal tiling of the plane. It was published by Rudolf Halin, and is a precursor to the work of Robertson and Seymour linking treewidth to large grid minors, which became an important component of the algorithmic theory of bidimensionality.
foaf:depiction
n17:Tiling_Regular_6-3_Hexagonal.svg
dct:subject
dbc:Infinite_graphs dbc:Graph_minor_theory
dbo:wikiPageID
38580904
dbo:wikiPageRevisionID
1052425981
dbo:wikiPageWikiLink
dbr:Hexagonal_tiling dbr:Graph_theory dbr:Euclidean_plane dbr:Cubic_graph dbr:Parameterized_complexity dbr:Planar_graph dbr:Grid_graph dbr:Algorithm dbr:Polynomial-time_approximation_scheme n13:Tiling_Regular_6-3_Hexagonal.svg dbr:Pursuit–evasion dbr:Homeomorphism_(graph_theory) dbr:Equivalence_relation dbc:Infinite_graphs dbr:Aleph_number dbr:End_(graph_theory) dbr:Mathematische_Annalen dbr:Bidimensionality dbr:Graph_structure_theorem dbr:Mathematische_Nachrichten dbr:Path_(graph_theory) dbr:Robertson–Seymour_theorem dbr:Graph_minor dbc:Graph_minor_theory dbr:Journal_of_Combinatorial_Theory dbr:Paul_Seymour_(mathematician) dbr:Disjoint_sets dbr:Haven_(graph_theory) dbr:Treewidth dbr:Degree_(graph_theory) dbr:Hamiltonian_path dbr:Neil_Robertson_(mathematician)
dbo:wikiPageExternalLink
n16:paper.pdf
owl:sameAs
freebase:m.0r4kn5b yago-res:Halin's_grid_theorem n19:4kBvq wikidata:Q5642351
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Harvtxt dbt:Reflist dbt:Sfnp dbt:Harvs dbt:Citation
dbo:thumbnail
n17:Tiling_Regular_6-3_Hexagonal.svg?width=300
dbp:authorlink
Rudolf Halin
dbp:first
Rudolf
dbp:last
Halin
dbp:year
1965
dbo:abstract
In graph theory, a branch of mathematics, Halin's grid theorem states that the infinite graphs with thick ends are exactly the graphs containing subdivisions of the hexagonal tiling of the plane. It was published by Rudolf Halin, and is a precursor to the work of Robertson and Seymour linking treewidth to large grid minors, which became an important component of the algorithmic theory of bidimensionality.
prov:wasDerivedFrom
wikipedia-en:Halin's_grid_theorem?oldid=1052425981&ns=0
dbo:wikiPageLength
7247
foaf:isPrimaryTopicOf
wikipedia-en:Halin's_grid_theorem
Subject Item
dbr:Treewidth
dbo:wikiPageWikiLink
dbr:Halin's_grid_theorem
Subject Item
dbr:Bidimensionality
dbo:wikiPageWikiLink
dbr:Halin's_grid_theorem
Subject Item
dbr:Rudolf_Halin
dbo:wikiPageWikiLink
dbr:Halin's_grid_theorem
Subject Item
wikipedia-en:Halin's_grid_theorem
foaf:primaryTopic
dbr:Halin's_grid_theorem