This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://complexityzoo.net/Complexity_Zoo:
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Strong_NP-completeness
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Fully_polynomial-time_approximation_scheme
rdfs:label
Fully polynomial-time approximation scheme
rdfs:comment
A fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least times the correct value, and at most times the correct value. The term FPTAS may also be used to refer to the class of problems that have an FPTAS. FPTAS is a subset of PTAS, and unless P = NP, it is a strict subset.
dcterms:subject
dbc:Approximation_algorithms dbc:Complexity_classes
dbo:wikiPageID
2047521
dbo:wikiPageRevisionID
1122326805
dbo:wikiPageWikiLink
dbr:Polynomial-time_approximation_scheme dbr:Self_reducibility dbr:Strongly_NP-complete dbr:Dynamic_programming dbr:Multiple_subset_sum dbr:List_of_knapsack_problems dbr:Algorithm dbr:Uniform-machines_scheduling dbr:Subset_sum_problem dbr:P_=_NP_problem dbr:Multiway_number_partitioning dbr:Function_problem dbr:Total_preorder dbr:Fixed-parameter_tractable dbr:Pseudo-polynomial_time dbr:Shortest_path_problem dbc:Complexity_classes dbr:Edge_cover dbr:Partial_Order dbr:Gerhard_J._Woeginger dbr:Knapsack_problem dbr:Natural_logarithm dbr:Optimization_problem dbc:Approximation_algorithms dbr:Unrelated-machines_scheduling dbr:Identical-machines_scheduling
dbo:wikiPageExternalLink
n9:F%23fptas
owl:sameAs
wikidata:Q110130630 n15:GMP8Z
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Rp
dbp:location
Lem.3.3
dbo:abstract
A fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least times the correct value, and at most times the correct value. In the context of optimization problems, the correct value is understood to be the value of the optimal solution, and it is often implied that an FPTAS should produce a valid solution (and not just the value of the solution). Returning a value and finding a solution with that value are equivalent assuming that the problem possesses self reducibility. Importantly, the run-time of an FPTAS is polynomial in the problem size and in 1/ε. This is in contrast to a general polynomial-time approximation scheme (PTAS). The run-time of a general PTAS is polynomial in the problem size for each specific ε, but might be exponential in 1/ε. The term FPTAS may also be used to refer to the class of problems that have an FPTAS. FPTAS is a subset of PTAS, and unless P = NP, it is a strict subset.
prov:wasDerivedFrom
wikipedia-en:Fully_polynomial-time_approximation_scheme?oldid=1122326805&ns=0
dbo:wikiPageLength
34752
foaf:isPrimaryTopicOf
wikipedia-en:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Bin_covering_problem
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Polynomial-time_approximation_scheme
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:FPTAS
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
dbo:wikiPageRedirects
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Fptas
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
dbo:wikiPageRedirects
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Fully-polynomial_time_approximation_scheme
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
dbo:wikiPageRedirects
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Fully_polynomial_approximation_scheme
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
dbo:wikiPageRedirects
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
dbr:Fully_polynomial_time_approximation_scheme
dbo:wikiPageWikiLink
dbr:Fully_polynomial-time_approximation_scheme
dbo:wikiPageRedirects
dbr:Fully_polynomial-time_approximation_scheme
Subject Item
wikipedia-en:Fully_polynomial-time_approximation_scheme
foaf:primaryTopic
dbr:Fully_polynomial-time_approximation_scheme