An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Identical-machines scheduling is an optimization problem in computer science and operations research. We are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m identical machines, such that a certain objective function is optimized, for example, the makespan is minimized. In the standard three-field notation for optimal job scheduling problems, the identical-machines variant is denoted by P in the first field. For example, " P||" is an identical machine scheduling problem with no constraints, where the goal is to minimize the maximum completion time.

Property Value
dbo:abstract
  • Identical-machines scheduling is an optimization problem in computer science and operations research. We are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m identical machines, such that a certain objective function is optimized, for example, the makespan is minimized. Identical machine scheduling is a special case of uniform machine scheduling, which is itself a special case of optimal job scheduling. In the general case, the processing time of each job may be different on different machines; in the case of identical machine scheduling, the processing time of each job is the same on each machine. Therefore, identical machine scheduling is equivalent to multiway number partitioning. A special case of identical machine scheduling is single-machine scheduling. In the standard three-field notation for optimal job scheduling problems, the identical-machines variant is denoted by P in the first field. For example, " P||" is an identical machine scheduling problem with no constraints, where the goal is to minimize the maximum completion time. In some variants of the problem, instead of minimizing the maximum completion time, it is desired to minimize the average completion time (averaged over all n jobs); it is denoted by P||. More generally, when some jobs are more important than others, it may be desired to minimize a weighted average of the completion time, where each job has a different weight. This is denoted by P||. (en)
  • 同机调度是计算机科学和运筹学中的一个优化问题。在这一问题中,我们有从到这n个不同执行时间的工作需要完成。除此之外,我们有m个完全相同的机器。在这一问题中,我们需要对特定的目标函数(如加工周期)进行优化。 同机调度是的一种特殊情况,而统一机器调度本身也是最优作业调度的一种特殊情况。两者的区别在于同机调度中所有的机器完全一样,而在统一机器调度中不同的机器执行相同的任务所需时间可能会有所不同。单机调度也可以视为一种特殊的同机调度。在最优作业调度问题的标准三字段表示法中,同机变量在第一个字段中用字母P表示。例如可以用于表示无约束条件的同机调度问题,其目标是最小化最大完工时间。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 67995256 (xsd:integer)
dbo:wikiPageLength
  • 11111 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1053857667 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 同机调度是计算机科学和运筹学中的一个优化问题。在这一问题中,我们有从到这n个不同执行时间的工作需要完成。除此之外,我们有m个完全相同的机器。在这一问题中,我们需要对特定的目标函数(如加工周期)进行优化。 同机调度是的一种特殊情况,而统一机器调度本身也是最优作业调度的一种特殊情况。两者的区别在于同机调度中所有的机器完全一样,而在统一机器调度中不同的机器执行相同的任务所需时间可能会有所不同。单机调度也可以视为一种特殊的同机调度。在最优作业调度问题的标准三字段表示法中,同机变量在第一个字段中用字母P表示。例如可以用于表示无约束条件的同机调度问题,其目标是最小化最大完工时间。 (zh)
  • Identical-machines scheduling is an optimization problem in computer science and operations research. We are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m identical machines, such that a certain objective function is optimized, for example, the makespan is minimized. In the standard three-field notation for optimal job scheduling problems, the identical-machines variant is denoted by P in the first field. For example, " P||" is an identical machine scheduling problem with no constraints, where the goal is to minimize the maximum completion time. (en)
rdfs:label
  • Identical-machines scheduling (en)
  • 同机调度 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License