This HTML5 document contains 75 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n12https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_conjectures
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Lowell_E._Jones
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
dbp:knownFor
dbr:Farrell–Jones_conjecture
dbo:knownFor
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Farrell-Jones_conjecture
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
dbo:wikiPageRedirects
dbr:Farrell–Jones_conjecture
Subject Item
dbr:F._Thomas_Farrell
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Farrell–Jones_conjecture
rdf:type
yago:Idea105833840 yago:Speculation105891783 yago:Cognition100023271 yago:Hypothesis105888929 yago:Concept105835747 yago:Abstraction100002137 yago:PsychologicalFeature100023100 yago:WikicatConjectures yago:Content105809192
rdfs:label
Farrell–Jones conjecture ボスト予想
rdfs:comment
In mathematics, the Farrell–Jones conjecture, named after F. Thomas Farrell and Lowell E. Jones, states that certain assembly maps are isomorphisms. These maps are given as certain homomorphisms. The motivation is the interest in the target of the assembly maps; this may be, for instance, the algebraic K-theory of a group ring or the L-theory of a group ring , where G is some group. The Baum–Connes conjecture formulates a similar statement, for the topological K-theory of reduced group -algebras . ボスト予想(en:Bost conjecture)は、1995年にフランスの数学者、ジャン=ブノワ・ボスが提起した予想で、代数的K-理論と、素数論を統一する予想である。 トーマス・ファレルとローウェルE.ジョーンズにちなんで名付けられたファレル=ジョーンズの推測(en:Farrell–Jones conjecture)につらなるとされ、これらは特定のアセンブリマップが同型であるとされるが、特定の準同型として与えられた動機は、群環の代数的-K理論とアセンブリマップのターゲットへの関心である。
dcterms:subject
dbc:Surgery_theory dbc:K-theory dbc:Conjectures dbc:Unsolved_problems_in_mathematics
dbo:wikiPageID
20643804
dbo:wikiPageRevisionID
1102792533
dbo:wikiPageWikiLink
dbr:Contractible dbr:Group_(mathematics) dbr:Equivariant_homology_theory dbr:Equivariant_cohomology dbr:Group_ring dbr:Lowell_E._Jones dbr:Fixed_point_set dbr:Homomorphism dbr:Isotropy_group dbr:Isomorphism dbr:Assembly_map dbr:Virtually_cyclic_group dbr:Surgery_obstruction dbc:K-theory dbc:Conjectures dbr:Regular_ring dbr:Baum–Connes_conjecture dbr:Whitehead_torsion dbr:Bass-Heller-Swan_decomposition dbc:Unsolved_problems_in_mathematics dbr:Wall's_finiteness_obstruction dbr:Topological_K-theory dbr:Jean-Benoît_Bost dbr:Algebraic_K-theory dbr:Kaplansky's_conjecture dbr:L-theory dbc:Surgery_theory dbr:F._Thomas_Farrell dbr:Classifying_space dbr:Classifying_spaces_for_families dbr:Novikov_conjecture
owl:sameAs
n12:4jVum freebase:m.0521y8l wikidata:Q5436273 dbpedia-ja:ボスト予想
dbo:abstract
ボスト予想(en:Bost conjecture)は、1995年にフランスの数学者、ジャン=ブノワ・ボスが提起した予想で、代数的K-理論と、素数論を統一する予想である。 トーマス・ファレルとローウェルE.ジョーンズにちなんで名付けられたファレル=ジョーンズの推測(en:Farrell–Jones conjecture)につらなるとされ、これらは特定のアセンブリマップが同型であるとされるが、特定の準同型として与えられた動機は、群環の代数的-K理論とアセンブリマップのターゲットへの関心である。 In mathematics, the Farrell–Jones conjecture, named after F. Thomas Farrell and Lowell E. Jones, states that certain assembly maps are isomorphisms. These maps are given as certain homomorphisms. The motivation is the interest in the target of the assembly maps; this may be, for instance, the algebraic K-theory of a group ring or the L-theory of a group ring , where G is some group. The sources of the assembly maps are equivariant homology theory evaluated on the classifying space of G with respect to the family of virtually cyclic subgroups of G. So assuming the Farrell–Jones conjecture is true, it is possible to restrict computations to virtually cyclic subgroups to get information on complicated objects such as or . The Baum–Connes conjecture formulates a similar statement, for the topological K-theory of reduced group -algebras .
prov:wasDerivedFrom
wikipedia-en:Farrell–Jones_conjecture?oldid=1102792533&ns=0
dbo:wikiPageLength
11803
foaf:isPrimaryTopicOf
wikipedia-en:Farrell–Jones_conjecture
Subject Item
dbr:Kaplansky's_conjectures
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:List_of_Stony_Brook_University_people
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Thompson_groups
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Arthur_Bartels
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Unifying_theories_in_mathematics
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:List_of_unsolved_problems_in_mathematics
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
Subject Item
dbr:Farrell-Jones_Conjecture
dbo:wikiPageWikiLink
dbr:Farrell–Jones_conjecture
dbo:wikiPageRedirects
dbr:Farrell–Jones_conjecture
Subject Item
wikipedia-en:Farrell–Jones_conjecture
foaf:primaryTopic
dbr:Farrell–Jones_conjecture