This HTML5 document contains 76 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
n17http://www.ccas.ru/personal/karatsuba/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:FEE_method
Subject Item
dbr:Minisat_01
dbo:wikiPageWikiLink
dbr:FEE_method
Subject Item
dbr:Anatoly_Karatsuba
dbo:wikiPageWikiLink
dbr:FEE_method
Subject Item
dbr:Fee_(disambiguation)
dbo:wikiPageWikiLink
dbr:FEE_method
dbo:wikiPageDisambiguates
dbr:FEE_method
Subject Item
dbr:FEE_method
rdf:type
yago:PsychologicalFeature100023100 yago:WikicatPiAlgorithms yago:WikicatComputerArithmeticAlgorithms yago:YagoPermanentlyLocatedEntity yago:Rule105846932 yago:Event100029378 yago:Procedure101023820 yago:Abstraction100002137 yago:Algorithm105847438 yago:Activity100407535 yago:Act100030358
rdfs:label
Метод БВЕ FEE method
rdfs:comment
Метод БВЕ (быстрого вычисления E-функций) — метод быстрого суммирования специального вида рядов. Построен в 1990 году . Позволяет вычислять быстро зигелевские E-функции, и в частности, . Зигель назвал «E-функциями» класс функций, «похожих на экспоненциальные». Этому классу принадлежат такие высшие трансцендентные функции как гипергеометрические, сферические, цилиндрические функции и так далее. In mathematics, the FEE method, or fast E-function evaluation method, is the method of fast summation of series of a special form. It was constructed in 1990 by and is so-named because it makes fast computations of the Siegel E-functions possible, in particular of . A class of functions, which are "similar to the exponential function," was given the name "E-functions" by Carl Ludwig Siegel. Among these functions are such special functions as the hypergeometric function, cylinder, spherical functions and so on. Using the FEE, it is possible to prove the following theorem:
dcterms:subject
dbc:Numerical_analysis dbc:Pi_algorithms dbc:Computer_arithmetic_algorithms
dbo:wikiPageID
21674054
dbo:wikiPageRevisionID
1118433972
dbo:wikiPageWikiLink
dbr:Complexity_of_computation_(bit) dbr:Apéry's_constant dbr:E-function dbr:Special_functions dbr:Catalan's_constant dbr:Trigonometric_functions dbr:Trigonometric_integral dbc:Numerical_analysis dbr:Carl_Ludwig_Siegel dbr:Fast_algorithms dbr:Hurwitz_zeta_function dbr:Bessel_function dbr:Pi dbr:AGM_method dbr:Hypergeometric_function dbr:Fresnel_integral dbr:Spherical_harmonics dbr:Analysis_of_algorithms dbc:Pi_algorithms dbr:Algebraic_number dbr:Ekaterina_Karatsuba dbr:Riemann_zeta_function dbr:Transcendental_function dbr:Euler–Mascheroni_constant dbr:Error_function dbr:Inverse_function dbr:Gamma_function dbr:Exponential_integral dbr:Algebraic_function dbr:E_(mathematical_constant) dbr:Exponential_function dbc:Computer_arithmetic_algorithms
dbo:wikiPageExternalLink
n17:divcen.htm n17:algen.htm
owl:sameAs
yago-res:FEE_method dbpedia-ru:Метод_БВЕ wikidata:Q4291816 n14:3yLhE freebase:m.05mv1zs dbpedia-fa:روش_FEE
dbp:wikiPageUsesTemplate
dbt:Math dbt:When dbt:Reflist
dbo:abstract
Метод БВЕ (быстрого вычисления E-функций) — метод быстрого суммирования специального вида рядов. Построен в 1990 году . Позволяет вычислять быстро зигелевские E-функции, и в частности, . Зигель назвал «E-функциями» класс функций, «похожих на экспоненциальные». Этому классу принадлежат такие высшие трансцендентные функции как гипергеометрические, сферические, цилиндрические функции и так далее. In mathematics, the FEE method, or fast E-function evaluation method, is the method of fast summation of series of a special form. It was constructed in 1990 by and is so-named because it makes fast computations of the Siegel E-functions possible, in particular of . A class of functions, which are "similar to the exponential function," was given the name "E-functions" by Carl Ludwig Siegel. Among these functions are such special functions as the hypergeometric function, cylinder, spherical functions and so on. Using the FEE, it is possible to prove the following theorem: Theorem: Let be an elementary transcendental function, that is the exponential function, or a trigonometric function, or an elementary algebraic function, or their superposition, or their inverse, or a superposition of the inverses. Then Here is the complexity of computation (bit) of the function with accuracy up to digits, is the complexity of multiplication of two -digit integers. The algorithms based on the method FEE include the algorithms for fast calculation of any elementary transcendental function for any value of the argument, the classical constants e, the Euler constant the Catalan and the Apéry constants, such higher transcendental functions as the Euler gamma function and its derivatives, the hypergeometric, spherical, cylinder (including the Bessel) functions and some other functions foralgebraic values of the argument and parameters, the Riemann zeta function for integer values of the argument and the Hurwitz zeta function for integer argument and algebraic values of the parameter, and also such special integrals as the integral of probability, the Fresnel integrals, the integral exponential function, the trigonometric integrals, and some other integrals for algebraic values of the argument with the complexity bound which is close to the optimal one, namely At present, only the FEE makes it possible to calculate fast the values of the functions from the class of higher transcendental functions, certain special integrals of mathematical physics and such classical constants as Euler's, Catalan's and Apéry's constants. An additional advantage of the method FEE is the possibility of parallelizing the algorithms based on the FEE.
prov:wasDerivedFrom
wikipedia-en:FEE_method?oldid=1118433972&ns=0
dbo:wikiPageLength
11029
foaf:isPrimaryTopicOf
wikipedia-en:FEE_method
Subject Item
dbr:The_FEE_method
dbo:wikiPageWikiLink
dbr:FEE_method
dbo:wikiPageRedirects
dbr:FEE_method
Subject Item
wikipedia-en:FEE_method
foaf:primaryTopic
dbr:FEE_method