This HTML5 document contains 150 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
n17http://elib.mi.sanu.ac.rs/files/journals/tm/27/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
dbpedia-kohttp://ko.dbpedia.org/resource/
n23http://sourceforge.net/projects/topdeg/
n31https://global.dbpedia.org/id/
dbpedia-trhttp://tr.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
n14http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_algebraic_topology_topics
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Barratt–Priddy_theorem
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Antipodal_point
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Vector_field
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree_of_a_continuous_mapping
rdf:type
yago:MathematicalRelation113783581 yago:Abstraction100002137 yago:Function113783816 yago:WikicatContinuousMappings yago:Relation100031921
rdfs:label
写像度 브라우어르 차수 Degree of a continuous mapping Degré d'une application 映射度 Степень отображения Stopień Brouwera Brouwerscher Abbildungsgrad Grado topologico
rdfs:comment
In topology, the degree of a continuous mapping between two compact oriented manifolds of the same dimension is a number that represents the number of times that the domain manifold wraps around the range manifold under the mapping. The degree is always an integer, but may be positive or negative depending on the orientations. Le degré d'une application continue entre variétés de même dimension est une généralisation de la notion d'enroulement d'un cercle sur lui-même. C'est un invariant homologique à valeurs entières. Sa définition, d'abord réservée aux applications différentiables, s'étend aux applications continues par passage à la limite du fait de son invariance par homotopie. Mais la construction des groupes d'homologie permet aussi de proposer une définition directe pour les applications continues. 写像度(しゃぞうど、degree, mapping degree)とは、コンパクト、弧状連結、向き付けられた同次元の多様体間での連続写像を特徴付ける整数のこと。写像のホモトピー不変量のひとつである。 在拓扑学中,两个同维数流形之间的连续映射的度数(degree)非正式地说是一个点被盖住的次数。一个映射的度数可用同调群,或(对光滑映射)的原像定义。它是卷绕数的一个推广。例如,考虑复平面上映射 zn,视为 S2 到自身的映射,具有度数 n,它将球面绕自身缠了 n 圈。 在物理学中,连续映射的度数,比如从空间到有序参数集的一个映射,是的一个例子。 Степень отображения — гомотопический инвариант непрерывного отображения между компактными многообразиями равной размерности. В простейшем случае, для отображения из окружности в окружность степень отображения можно определить как число оборотов точки когда пробегает окружность. Stopień Brouwera lub inaczej stopień topologiczny – narzędzie pozwalające na określenie, czy dane równanie ma rozwiązanie. Jest jednym z niezmienników topologicznych i ma szerokie zastosowanie w nieliniowej analizie matematycznej. In matematica, e più precisamente in topologia, il grado topologico è una quantità introdotta da Luitzen Brouwer attorno al 1910 che misura il "numero di avvolgimento" di una funzione continua fra spazi topologici "della stessa dimensione". Questa quantità fornisce un'informazione sul comportamento qualitativo globale della funzione, ed è un invariante omotopico, cioè non cambia se la funzione viene deformata in modo continuo (una tale deformazione è chiamata omotopia). Il grado di una funzione viene solitamente indicato con deg . 대수적 위상수학에서, 두 다양체 사이의 연속 함수의 브라우어르 차수(Brouwer次數, Brouwer degree)는 함수의 정의역이 함수의 치역을 몇 번 감싸는지를 나타내는 정수이다. 기호는 .
foaf:depiction
n14:Sphere_wrapped_round_itself.png
dcterms:subject
dbc:Algebraic_topology dbc:Differential_topology dbc:Continuous_mappings
dbo:wikiPageID
3094450
dbo:wikiPageRevisionID
1092408893
dbo:wikiPageWikiLink
n4:Sphere_wrapped_round_itself.png dbr:Relative_homology dbr:Homotopy dbr:Singular_homology dbr:Integer dbr:Boundary_(topology) dbr:Winding_number dbr:Continuous_map dbc:Differential_topology dbc:Algebraic_topology dbr:GF(2) dbr:Luitzen_Egbertus_Jan_Brouwer dbr:Manifold dbr:Hopf_theorem dbr:Density_(polytope) dbr:Jacobian_matrix_and_determinant dbr:Geometry dbr:Fundamental_class dbr:Physics dbr:Connected_space dbr:Orientation_(mathematics) dbr:Topology dbc:Continuous_mappings dbr:Continuous_function_(topology) dbr:Brouwer_fixed_point_theorem dbr:Differential_form dbr:Topological_quantum_number dbr:Region_(mathematical_analysis) dbr:Dimension dbr:Regular_value dbr:Covering_map dbr:Covering_number dbr:Topological_degree_theory dbr:Compact_space dbr:De_Rham_cohomology dbr:Range_of_a_function dbr:Homology_group dbr:Domain_of_a_function dbr:Invariant_(mathematics) dbr:Orientability dbr:N-sphere dbr:Diffeomorphism
dbo:wikiPageExternalLink
n17:tm1426.pdf n23:
owl:sameAs
wikidata:Q306564 dbpedia-de:Brouwerscher_Abbildungsgrad dbpedia-fr:Degré_d'une_application yago-res:Degree_of_a_continuous_mapping dbpedia-zh:映射度 dbpedia-tr:Derece_(topoloji) dbpedia-it:Grado_topologico dbpedia-ru:Степень_отображения dbpedia-ja:写像度 dbpedia-ko:브라우어르_차수 freebase:m.08r0z9 dbpedia-pl:Stopień_Brouwera n31:2qtKh
dbp:wikiPageUsesTemplate
dbt:Springer dbt:About dbt:Cite_book dbt:Reflist
dbo:thumbnail
n14:Sphere_wrapped_round_itself.png?width=300
dbp:id
p/b130260
dbp:title
Brouwer degree
dbo:abstract
대수적 위상수학에서, 두 다양체 사이의 연속 함수의 브라우어르 차수(Brouwer次數, Brouwer degree)는 함수의 정의역이 함수의 치역을 몇 번 감싸는지를 나타내는 정수이다. 기호는 . Stopień Brouwera lub inaczej stopień topologiczny – narzędzie pozwalające na określenie, czy dane równanie ma rozwiązanie. Jest jednym z niezmienników topologicznych i ma szerokie zastosowanie w nieliniowej analizie matematycznej. 在拓扑学中,两个同维数流形之间的连续映射的度数(degree)非正式地说是一个点被盖住的次数。一个映射的度数可用同调群,或(对光滑映射)的原像定义。它是卷绕数的一个推广。例如,考虑复平面上映射 zn,视为 S2 到自身的映射,具有度数 n,它将球面绕自身缠了 n 圈。 在物理学中,连续映射的度数,比如从空间到有序参数集的一个映射,是的一个例子。 In matematica, e più precisamente in topologia, il grado topologico è una quantità introdotta da Luitzen Brouwer attorno al 1910 che misura il "numero di avvolgimento" di una funzione continua fra spazi topologici "della stessa dimensione". Questa quantità fornisce un'informazione sul comportamento qualitativo globale della funzione, ed è un invariante omotopico, cioè non cambia se la funzione viene deformata in modo continuo (una tale deformazione è chiamata omotopia). L'esempio fondamentale è quello di una funzione continua tra due circonferenze: il grado topologico è il "numero di avvolgimenti" che la funzione fa compiere alla circonferenza. Il grado di una funzione viene solitamente indicato con deg . Le degré d'une application continue entre variétés de même dimension est une généralisation de la notion d'enroulement d'un cercle sur lui-même. C'est un invariant homologique à valeurs entières. Sa définition, d'abord réservée aux applications différentiables, s'étend aux applications continues par passage à la limite du fait de son invariance par homotopie. Mais la construction des groupes d'homologie permet aussi de proposer une définition directe pour les applications continues. Степень отображения — гомотопический инвариант непрерывного отображения между компактными многообразиями равной размерности. В простейшем случае, для отображения из окружности в окружность степень отображения можно определить как число оборотов точки когда пробегает окружность. In topology, the degree of a continuous mapping between two compact oriented manifolds of the same dimension is a number that represents the number of times that the domain manifold wraps around the range manifold under the mapping. The degree is always an integer, but may be positive or negative depending on the orientations. The degree of a map was first defined by Brouwer, who showed that the degree is homotopy invariant (invariant among homotopies), and used it to prove the Brouwer fixed point theorem. In modern mathematics, the degree of a map plays an important role in topology and geometry. In physics, the degree of a continuous map (for instance a map from space to some order parameter set) is one example of a topological quantum number. 写像度(しゃぞうど、degree, mapping degree)とは、コンパクト、弧状連結、向き付けられた同次元の多様体間での連続写像を特徴付ける整数のこと。写像のホモトピー不変量のひとつである。
gold:hypernym
dbr:Number
prov:wasDerivedFrom
wikipedia-en:Degree_of_a_continuous_mapping?oldid=1092408893&ns=0
dbo:wikiPageLength
10818
foaf:isPrimaryTopicOf
wikipedia-en:Degree_of_a_continuous_mapping
Subject Item
dbr:Covering_number
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Gauss_map
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Timeline_of_manifolds
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Morphism_of_algebraic_varieties
rdfs:seeAlso
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Milnor_number
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Oscillator_representation
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Louis_Nirenberg
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Density_(polytope)
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Hopf_theorem
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Linking_number
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Algebraic_curve
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Cyclic_order
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Brouwer_fixed-point_theorem
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Cellular_homology
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageDisambiguates
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Joseph_H._Sampson
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Sphere_eversion
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:L._E._J._Brouwer
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbp:knownFor
dbr:Degree_of_a_continuous_mapping
dbo:knownFor
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Winding_number
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Mapping_class_group
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Borsuk–Ulam_theorem
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Chain_complex
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Poincaré–Hopf_theorem
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Fixed-point_index
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Topological_quantum_number
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Topological_degree_theory
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Brouwer_degree
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree_(continuous_map)
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree_of_a_continuous_map
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree_of_a_map
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degree_of_a_mapping
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
dbr:Degrees_of_maps
dbo:wikiPageWikiLink
dbr:Degree_of_a_continuous_mapping
dbo:wikiPageRedirects
dbr:Degree_of_a_continuous_mapping
Subject Item
wikipedia-en:Degree_of_a_continuous_mapping
foaf:primaryTopic
dbr:Degree_of_a_continuous_mapping