This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n16http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n13http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Convex_hull_of_a_simple_polygon
rdfs:label
Convex hull of a simple polygon
rdfs:comment
In discrete geometry and computational geometry, the convex hull of a simple polygon is the polygon of minimum perimeter that contains a given simple polygon. It is a special case of the more general concept of a convex hull. It can be computed in linear time, faster than algorithms for convex hulls of point sets.
foaf:depiction
n13:Convex_hull_of_a_simple_polygon.svg
dcterms:subject
dbc:Convex_hulls dbc:Convex_hull_algorithms
dbo:wikiPageID
62646738
dbo:wikiPageRevisionID
1006581813
dbo:wikiPageWikiLink
dbc:Convex_hulls dbr:Stack_(abstract_data_type) dbr:Simple_polygon dbr:Convex_polygon dbr:Erdős–Nagy_theorem dbr:Deque dbr:Computational_geometry dbc:Convex_hull_algorithms dbr:Polygonal_chain dbr:Convex_hull dbr:Convex_hull_algorithms dbr:Discrete_geometry dbr:Linear_time n16:Convex_hull_of_a_simple_polygon.svg dbr:Piecewise_smooth dbr:Graham_scan
owl:sameAs
wikidata:Q85753985 n15:BzweN
dbp:wikiPageUsesTemplate
dbt:R dbt:Main dbt:Harvtxt dbt:Reflist dbt:Short_description
dbo:thumbnail
n13:Convex_hull_of_a_simple_polygon.svg?width=300
dbo:abstract
In discrete geometry and computational geometry, the convex hull of a simple polygon is the polygon of minimum perimeter that contains a given simple polygon. It is a special case of the more general concept of a convex hull. It can be computed in linear time, faster than algorithms for convex hulls of point sets. The convex hull of a simple polygon can be subdivided into the given polygon itself and into polygonal pockets bounded by a polygonal chain of the polygon together with a single convex hull edge. Repeatedly reflecting an arbitrarily chosen pocket across this convex hull edge produces a sequence of larger simple polygons; according to the Erdős–Nagy theorem, this process eventually terminates with a convex polygon.
prov:wasDerivedFrom
wikipedia-en:Convex_hull_of_a_simple_polygon?oldid=1006581813&ns=0
dbo:wikiPageLength
9435
foaf:isPrimaryTopicOf
wikipedia-en:Convex_hull_of_a_simple_polygon
Subject Item
dbr:Erdős–Nagy_theorem
dbo:wikiPageWikiLink
dbr:Convex_hull_of_a_simple_polygon
Subject Item
dbr:Relative_convex_hull
dbo:wikiPageWikiLink
dbr:Convex_hull_of_a_simple_polygon
Subject Item
wikipedia-en:Convex_hull_of_a_simple_polygon
foaf:primaryTopic
dbr:Convex_hull_of_a_simple_polygon