This HTML5 document contains 73 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
n15http://dbpedia.org/resource/Talk:
dbpedia-ruhttp://ru.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:List_of_algorithms
dbo:wikiPageWikiLink
dbr:Cipolla's_algorithm
Subject Item
dbr:Quadratic_residue
dbo:wikiPageWikiLink
dbr:Cipolla's_algorithm
Subject Item
dbr:Michele_Cipolla
dbo:wikiPageWikiLink
dbr:Cipolla's_algorithm
Subject Item
dbr:Tonelli–Shanks_algorithm
dbo:wikiPageWikiLink
dbr:Cipolla's_algorithm
Subject Item
dbr:Cipolla
dbo:wikiPageWikiLink
dbr:Cipolla's_algorithm
dbo:wikiPageDisambiguates
dbr:Cipolla's_algorithm
Subject Item
dbr:Cipolla's_algorithm
rdf:type
yago:Algorithm105847438 yago:PsychologicalFeature100023100 yago:Activity100407535 yago:Event100029378 yago:Abstraction100002137 yago:Act100030358 yago:Procedure101023820 yago:YagoPermanentlyLocatedEntity yago:Rule105846932 yago:WikicatNumberTheoreticAlgorithms
rdfs:label
Алгоритм Чиполлы Cipolla's algorithm
rdfs:comment
In computational number theory, Cipolla's algorithm is a technique for solving a congruence of the form where , so n is the square of x, and where is an odd prime. Here denotes the finite field with elements; . The algorithm is named after Michele Cipolla, an Italian mathematician who discovered it in 1907. Apart from prime moduli, Cipolla's algorithm is also able to take square roots modulo prime powers. Алгоритм Чиполлы — это техника решения конгруэнтного уравнения вида где , так что n будет квадратом числа x, и где является нечётным простым числом. Здесь обозначает конечное поле с элементами . Алгоритм носит имя итальянского математика , открывшего метод в 1907.
dcterms:subject
dbc:Articles_containing_proofs dbc:Number_theoretic_algorithms dbc:Modular_arithmetic
dbo:wikiPageID
25766973
dbo:wikiPageRevisionID
1116824954
dbo:wikiPageWikiLink
dbr:Binary_numeral_system dbr:Identity_element dbr:Computational_number_theory dbr:Congruence_relation dbr:Numerical_digit dbr:Associativity dbr:Field_(mathematics) dbc:Number_theoretic_algorithms dbr:Freshman's_dream dbr:Distributivity dbr:Tonelli–Shanks_algorithm dbr:Commutativity dbr:Characteristic_(algebra) dbc:Articles_containing_proofs dbr:Algorithm dbr:Addition dbr:Imaginary_unit dbr:Element_(mathematics) dbr:Prime_number dbr:Inverse_element dbr:Parity_(mathematics) dbc:Modular_arithmetic dbr:Trial_and_error dbr:Fermat's_little_theorem n15:Cipolla's_algorithm dbr:Legendre_symbol dbr:Mathematician dbr:Euler's_criterion dbr:Square_root dbr:Integer_polynomial dbr:Italy dbr:Multiplication dbr:Lagrange's_theorem_(number_theory) dbr:Field_extension dbr:Complex_number dbr:Michele_Cipolla
owl:sameAs
dbpedia-ru:Алгоритм_Чиполлы freebase:m.09v19yz yago-res:Cipolla's_algorithm n17:4iFxL wikidata:Q5121280
dbp:wikiPageUsesTemplate
dbt:Number_theoretic_algorithms
dbo:abstract
Алгоритм Чиполлы — это техника решения конгруэнтного уравнения вида где , так что n будет квадратом числа x, и где является нечётным простым числом. Здесь обозначает конечное поле с элементами . Алгоритм носит имя итальянского математика , открывшего метод в 1907. In computational number theory, Cipolla's algorithm is a technique for solving a congruence of the form where , so n is the square of x, and where is an odd prime. Here denotes the finite field with elements; . The algorithm is named after Michele Cipolla, an Italian mathematician who discovered it in 1907. Apart from prime moduli, Cipolla's algorithm is also able to take square roots modulo prime powers.
prov:wasDerivedFrom
wikipedia-en:Cipolla's_algorithm?oldid=1116824954&ns=0
dbo:wikiPageLength
13507
foaf:isPrimaryTopicOf
wikipedia-en:Cipolla's_algorithm
Subject Item
wikipedia-en:Cipolla's_algorithm
foaf:primaryTopic
dbr:Cipolla's_algorithm