This HTML5 document contains 92 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n12http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n15https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n16http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Omega-categorical_theory
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Dushnik–Miller_theorem
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Dyadic_rational
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Order_isomorphism
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Fraïssé_limit
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Minkowski's_question-mark_function
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Baumgartner's_axiom
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Back-and-forth_method
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Suslin's_problem
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:Cantor's_isomorphism_theorem
rdfs:label
Cantor's isomorphism theorem
rdfs:comment
In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. It is named after Georg Cantor, and can be proved by the back-and-forth method sometimes attributed to Cantor, but Cantor's original proof only used the "going forth" half of this method.
foaf:depiction
n16:Minkowski_question_mark.svg
dcterms:subject
dbc:Order_theory dbc:Model_theory
dbo:wikiPageID
68245955
dbo:wikiPageRevisionID
1113547825
dbo:wikiPageWikiLink
dbr:Proper_forcing_axiom dbr:Binary_relation dbr:2-transitive_group dbr:Minkowski's_question-mark_function dbr:Cantor's_first_uncountability_proof dbr:Total_order dbr:First-order_theory dbr:Suslin's_problem dbr:Saturated_model dbr:Even_number dbr:Type_(model_theory) dbc:Order_theory dbr:Algebraic_number n12:Minkowski_question_mark.svg dbr:Baumgartner's_axiom dbr:Power_of_two dbr:Categorical_theory dbc:Model_theory dbr:Stable_theory dbr:Arithmetic_mean dbr:Felix_Hausdorff dbr:Rational_number dbr:Piecewise_linear_function dbr:Countable_set dbr:Omega-categorical_theory dbr:Connected_relation dbr:Wacław_Sierpiński dbr:Dedekind-complete dbr:Quantifier_elimination dbr:Zermelo–Fraenkel_set_theory dbr:Complete_theory dbr:Dyadic_rational dbr:Dedekind_cut dbr:Dense_order dbr:Greedy_algorithm dbr:Unit_interval dbr:Transitive_relation dbr:Martin's_axiom dbr:Model_theory dbr:Continuum_hypothesis dbr:Axiom_of_choice dbr:Reflexive_relation dbr:Back-and-forth_method dbr:Algorithm dbr:Order_theory dbr:Georg_Cantor dbr:Computably_enumerable_set dbr:Ordered_pair dbr:Order_isomorphism dbr:Integer dbr:Bijection dbr:Coq dbr:Temporal_logic dbr:Cardinality dbr:Real_number dbr:Order_automorphism dbr:Linear_order
owl:sameAs
wikidata:Q107710112 n15:FqxR2
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Reflist dbt:Use_mdy_dates dbt:R dbt:Use_list-defined_references dbt:Harvtxt
dbo:thumbnail
n16:Minkowski_question_mark.svg?width=300
dbp:cs1Dates
ly
dbp:date
July 2021
dbo:abstract
In order theory and model theory, branches of mathematics, Cantor's isomorphism theorem states that every two countable dense unbounded linear orders are order-isomorphic. It is named after Georg Cantor, and can be proved by the back-and-forth method sometimes attributed to Cantor, but Cantor's original proof only used the "going forth" half of this method.
prov:wasDerivedFrom
wikipedia-en:Cantor's_isomorphism_theorem?oldid=1113547825&ns=0
dbo:wikiPageLength
21264
foaf:isPrimaryTopicOf
wikipedia-en:Cantor's_isomorphism_theorem
Subject Item
dbr:Cantor's_theorem_(disambiguation)
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
dbr:List_of_things_named_after_Georg_Cantor
dbo:wikiPageWikiLink
dbr:Cantor's_isomorphism_theorem
Subject Item
wikipedia-en:Cantor's_isomorphism_theorem
foaf:primaryTopic
dbr:Cantor's_isomorphism_theorem