This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
n19http://resolver.sub.uni-goettingen.de/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Approximation_in_algebraic_groups
rdf:type
yago:Abstraction100002137 yago:WikicatAlgebraicGroups yago:Group100031264 dbo:Software
rdfs:label
Approximation in algebraic groups
rdfs:comment
In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups G over global fields k.
dct:subject
dbc:Algebraic_groups dbc:Diophantine_geometry
dbo:wikiPageID
3087377
dbo:wikiPageRevisionID
1074666867
dbo:wikiPageWikiLink
dbr:Inner_form dbr:Chinese_remainder_theorem dbr:Radical_of_an_algebraic_group dbr:Adjoint_group dbc:Algebraic_groups dbr:Number_field dbr:Hasse_principle dbr:Chevalley_group dbc:Diophantine_geometry dbr:Unipotent dbr:Dense_subset dbr:Annals_of_Mathematics dbr:Superstrong_approximation dbr:Kneser–Tits_conjecture dbr:Local_field dbr:Algebraic_group dbr:American_Mathematical_Society dbr:Global_field dbr:Finite_field
dbo:wikiPageExternalLink
n19:purl%3FGDZPPN002174561
owl:sameAs
n9:4R79N wikidata:Q4781766 freebase:m.08qjnh yago-res:Approximation_in_algebraic_groups
dbp:wikiPageUsesTemplate
dbt:Harv dbt:Citation dbt:Harvs dbt:Harvtxt
dbo:abstract
In algebraic group theory, approximation theorems are an extension of the Chinese remainder theorem to algebraic groups G over global fields k.
gold:hypernym
dbr:Extension
prov:wasDerivedFrom
wikipedia-en:Approximation_in_algebraic_groups?oldid=1074666867&ns=0
dbo:wikiPageLength
5209
foaf:isPrimaryTopicOf
wikipedia-en:Approximation_in_algebraic_groups
Subject Item
dbr:Thin_set_(Serre)
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Weak_approximation_theorem
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
dbo:wikiPageRedirects
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Martin_Kneser
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Strong_approximation
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
dbo:wikiPageRedirects
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Strong_approximation_in_algebraic_groups
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
dbo:wikiPageRedirects
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Strong_approximation_theorem
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
dbo:wikiPageRedirects
dbr:Approximation_in_algebraic_groups
Subject Item
dbr:Weak_approximation_in_algebraic_groups
dbo:wikiPageWikiLink
dbr:Approximation_in_algebraic_groups
dbo:wikiPageRedirects
dbr:Approximation_in_algebraic_groups
Subject Item
wikipedia-en:Approximation_in_algebraic_groups
foaf:primaryTopic
dbr:Approximation_in_algebraic_groups