In probability, weak dependence of random variables is a generalization of independence that is weaker than the concept of a martingale. A (time) sequence of random variables is weakly dependent if distinct portions of the sequence have a covariance that asymptotically decreases to 0 as the blocks are further separated in time. Weak dependence primarily appears as a technical condition in various probabilistic limit theorems.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |