An Entity of Type: WikicatEllipticCurves, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, the twisted Edwards curves are plane models of elliptic curves, a generalisation of Edwards curves introduced by Bernstein, Birkner, Joye, Lange and Peters in 2008. The curve set is named after mathematician Harold M. Edwards. Elliptic curves are important in public key cryptography and twisted Edwards curves are at the heart of an electronic signature scheme called EdDSA that offers high performance while avoiding security problems that have surfaced in other digital signature schemes.

Property Value
dbo:abstract
  • En géométrie algébrique, les courbes d'Edwards tordues sont des modèles plans de courbes elliptiques, une généralisation des courbes d'Edwards introduite par Bernstein, Birkner, Joye, Lange et Peters en 2008. Le nom de la courbe est celui du mathématicien Harold M. Edwards. Les courbes elliptiques sont importantes dans la cryptographie à clé publique et les courbes d'Edwards tordues sont au cœur d'un schéma de signature électronique appelé EdDSA qui offre de hautes performances tout en évitant les problèmes de sécurité qui ont fait surface dans d'autres systèmes de signature numérique. Comme leur nom l'indique, chaque courbe d'Edwards tordue est une d'une courbe d'Edwards.Une courbe d'Edwards tordue sur un corps qui a est une courbe plane affine définie par l'équation : où sont des éléments distincts non nuls de . Le cas particulier est sans torsion, parce que la courbe y est simplifiable à une simple courbe d'Edwards. Les courbes d'Edwards tordues sont en équivalence birationnelle avec les courbes de Montgomery. (fr)
  • In algebraic geometry, the twisted Edwards curves are plane models of elliptic curves, a generalisation of Edwards curves introduced by Bernstein, Birkner, Joye, Lange and Peters in 2008. The curve set is named after mathematician Harold M. Edwards. Elliptic curves are important in public key cryptography and twisted Edwards curves are at the heart of an electronic signature scheme called EdDSA that offers high performance while avoiding security problems that have surfaced in other digital signature schemes. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25889726 (xsd:integer)
dbo:wikiPageLength
  • 9914 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1016826005 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In algebraic geometry, the twisted Edwards curves are plane models of elliptic curves, a generalisation of Edwards curves introduced by Bernstein, Birkner, Joye, Lange and Peters in 2008. The curve set is named after mathematician Harold M. Edwards. Elliptic curves are important in public key cryptography and twisted Edwards curves are at the heart of an electronic signature scheme called EdDSA that offers high performance while avoiding security problems that have surfaced in other digital signature schemes. (en)
  • En géométrie algébrique, les courbes d'Edwards tordues sont des modèles plans de courbes elliptiques, une généralisation des courbes d'Edwards introduite par Bernstein, Birkner, Joye, Lange et Peters en 2008. Le nom de la courbe est celui du mathématicien Harold M. Edwards. Les courbes elliptiques sont importantes dans la cryptographie à clé publique et les courbes d'Edwards tordues sont au cœur d'un schéma de signature électronique appelé EdDSA qui offre de hautes performances tout en évitant les problèmes de sécurité qui ont fait surface dans d'autres systèmes de signature numérique. (fr)
rdfs:label
  • Courbe d'Edwards tordue (fr)
  • Twisted Edwards curve (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License