An Entity of Type: ethnic group, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematical finite group theory, Thompson's original uniqueness theorem states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. gave a shorter proof of the uniqueness theorem.

Property Value
dbo:abstract
  • In mathematical finite group theory, Thompson's original uniqueness theorem states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. gave a shorter proof of the uniqueness theorem. (en)
  • Inom matematiken är Thompsons unikhetssats ett resultat som säger att en minimal enkel ändlig grupp av udda ordning har en unik maximal delgrupp som innehåller en given av rang 3. ) gav ett kortare bevis av satsen. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 29764807 (xsd:integer)
dbo:wikiPageLength
  • 1717 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1086645116 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematical finite group theory, Thompson's original uniqueness theorem states that in a minimal simple finite group of odd order there is a unique maximal subgroup containing a given elementary abelian subgroup of rank 3. gave a shorter proof of the uniqueness theorem. (en)
  • Inom matematiken är Thompsons unikhetssats ett resultat som säger att en minimal enkel ändlig grupp av udda ordning har en unik maximal delgrupp som innehåller en given av rang 3. ) gav ett kortare bevis av satsen. (sv)
rdfs:label
  • Thompson uniqueness theorem (en)
  • Thompsons unikhetssats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License