In differential geometry, the tensor product of vector bundles E, F (over same space ) is a vector bundle, denoted by E ⊗ F, whose fiber over a point is the tensor product of vector spaces Ex ⊗ Fx. Example: If O is a trivial line bundle, then E ⊗ O = E for any E. Example: E ⊗ E ∗ is canonically isomorphic to the endomorphism bundle End(E), where E ∗ is the dual bundle of E.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is rdfs:seeAlso of | |
is foaf:primaryTopic of |