In mathematics, a supersolvable arrangement is a hyperplane arrangement which has a maximal flag with only modular elements. Equivalently, the intersection semilattice of the arrangement is a supersolvable lattice, in the sense of Richard P. Stanley. As shown by Hiroaki Terao, a complex hyperplane arrangement is supersolvable if and only if its complement is fiber-type. Examples include arrangements associated with Coxeter groups of type A and B. It is known that the of a supersolvable arrangement is a Koszul algebra; whether the converse is true is an open problem.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dct:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |