An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of thi

Property Value
dbo:abstract
  • In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of this refined conjecture to higher orders of vanishing. (en)
  • 数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5685631 (xsd:integer)
dbo:wikiPageLength
  • 8361 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1045234031 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Harold Stark (en)
dbp:last
  • Stark (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1971 (xsd:integer)
  • 1975 (xsd:integer)
  • 1976 (xsd:integer)
  • 1980 (xsd:integer)
dct:subject
rdf:type
rdfs:comment
  • 数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。 (ja)
  • In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of thi (en)
rdfs:label
  • スターク予想 (ja)
  • Stark conjectures (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License