For applied mathematics, in nonlinear control theory, a non-linear system of the form is said to satisfy the small control property if for every there exists a so that for all there exists a so that the time derivative of the system's Lyapunov function is negative definite at that point. In other words, even if the control input is arbitrarily small, a starting configuration close enough to the origin of the system can be found that is asymptotically stabilizable by such an input.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |