An Entity of Type: planet, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, more precisely, in the theory of simplicial sets, a simplicial group is a simplicial object in the category of groups. Similarly, a simplicial abelian group is a simplicial object in the category of abelian groups. A simplicial group is a Kan complex (in particular, its homotopy groups make sense). The Dold–Kan correspondence says that a simplicial abelian group may be identified with a chain complex. In fact it can be shown thatany simplicial abelian group is non-canonically homotopy equivalent to a product of Eilenberg–MacLane spaces,

Property Value
dbo:abstract
  • In mathematics, more precisely, in the theory of simplicial sets, a simplicial group is a simplicial object in the category of groups. Similarly, a simplicial abelian group is a simplicial object in the category of abelian groups. A simplicial group is a Kan complex (in particular, its homotopy groups make sense). The Dold–Kan correspondence says that a simplicial abelian group may be identified with a chain complex. In fact it can be shown thatany simplicial abelian group is non-canonically homotopy equivalent to a product of Eilenberg–MacLane spaces, A commutative monoid in the category of simplicial abelian groups is a simplicial commutative ring. discusses a simplicial analogue of the fact that a cohomology class on a Kähler manifold has a unique harmonic representative and deduces Kirchhoff's circuit laws from these observations. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 39418646 (xsd:integer)
dbo:wikiPageLength
  • 2052 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1051809402 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • simplicial+group (en)
dbp:title
  • simplicial group (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, more precisely, in the theory of simplicial sets, a simplicial group is a simplicial object in the category of groups. Similarly, a simplicial abelian group is a simplicial object in the category of abelian groups. A simplicial group is a Kan complex (in particular, its homotopy groups make sense). The Dold–Kan correspondence says that a simplicial abelian group may be identified with a chain complex. In fact it can be shown thatany simplicial abelian group is non-canonically homotopy equivalent to a product of Eilenberg–MacLane spaces, (en)
rdfs:label
  • Simplicial group (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License