An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Sierpiński's constant is a mathematical constant usually denoted as K. One way of defining it is as the following limit: where r2(k) is a number of representations of k as a sum of the form a2 + b2 for integer a and b. It can be given in closed form as: where is Gauss's constant and is the Euler-Mascheroni constant. Another way to define/understand Sierpiński's constant is, Let r(n) denote the number of representations of by squares, then the Summatory Function of has the Asymptotic expansion , where is the Sierpinski constant. The above plot shows ,

Property Value
dbo:abstract
  • Die Sierpiński-Konstante ist eine mathematische Konstante, benannt nach dem polnischen Mathematiker Wacław Sierpiński. Sie kann unter anderem durch den folgenden Ausdruck definiert werden: wobei die Anzahl der Darstellungen von in der Form mit ganzen Zahlen und unter Beachtung der Reihenfolge, die Kreiszahl und der natürliche Logarithmus ist. (de)
  • La constante de Sierpiński est la constante mathématique, habituellement notée K, définie par : où r2(k) est le nombre de représentations de k comme une somme de deux carrés d'entiers. Sa valeur est : , où γ désigne la constante d'Euler-Mascheroni et Γ la fonction gamma. (fr)
  • Sierpiński's constant is a mathematical constant usually denoted as K. One way of defining it is as the following limit: where r2(k) is a number of representations of k as a sum of the form a2 + b2 for integer a and b. It can be given in closed form as: where is Gauss's constant and is the Euler-Mascheroni constant. Another way to define/understand Sierpiński's constant is, Let r(n) denote the number of representations of by squares, then the Summatory Function of has the Asymptotic expansion , where is the Sierpinski constant. The above plot shows , with the value of indicated as the solid horizontal line. (en)
  • 시에르핀스키 상수(Sierpiński constant)는 바츠와프 시에르핀스키의 이름에서 명명되었으며, 시에르핀스키 상수는 대개 로 표시된 수학 상수다. 이를 정의하는 한 가지 방법으로는 제한된 표현식을 사용하는 것이다. 여기서 는 자연수 와 에 대한 형태 의 합인 의 표현 수다. 다음과 같이 닫힌 형식으로 제공 될 수 있다. 가우스 상수이고 오일러-마스케로니 상수이다. 감마 함수 (ko)
  • Inom matematiken är Sierpińskis konstant en matematisk konstant, vanligen betecknad med K. Den definieras som gränsvärdet där r2(k) är antalet representationer av k som summan av två kvadrater. Den kan skrivas i sluten form som Konstanten är uppkallad efter Wacław Sierpiński. (sv)
  • Stała Sierpińskiego – stała matematyczna oznaczana na ogół jako K, którą można zdefiniować jako granicę: gdzie wyraża, na ile sposobów można przedstawić jako dla i naturalnych. Jej przybliżona wartość wynosi: ≈ 2,58498 17595 79253 21706 58935... (pl)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1805356 (xsd:integer)
dbo:wikiPageLength
  • 2678 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1087854431 (xsd:integer)
dbo:wikiPageWikiLink
dbp:name
  • Decimal expansion of Sierpiński's constant (en)
dbp:sequencenumber
  • A062089 (en)
dbp:title
  • Sierpinski Constant (en)
dbp:urlname
  • SierpinskiConstant (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Die Sierpiński-Konstante ist eine mathematische Konstante, benannt nach dem polnischen Mathematiker Wacław Sierpiński. Sie kann unter anderem durch den folgenden Ausdruck definiert werden: wobei die Anzahl der Darstellungen von in der Form mit ganzen Zahlen und unter Beachtung der Reihenfolge, die Kreiszahl und der natürliche Logarithmus ist. (de)
  • La constante de Sierpiński est la constante mathématique, habituellement notée K, définie par : où r2(k) est le nombre de représentations de k comme une somme de deux carrés d'entiers. Sa valeur est : , où γ désigne la constante d'Euler-Mascheroni et Γ la fonction gamma. (fr)
  • 시에르핀스키 상수(Sierpiński constant)는 바츠와프 시에르핀스키의 이름에서 명명되었으며, 시에르핀스키 상수는 대개 로 표시된 수학 상수다. 이를 정의하는 한 가지 방법으로는 제한된 표현식을 사용하는 것이다. 여기서 는 자연수 와 에 대한 형태 의 합인 의 표현 수다. 다음과 같이 닫힌 형식으로 제공 될 수 있다. 가우스 상수이고 오일러-마스케로니 상수이다. 감마 함수 (ko)
  • Inom matematiken är Sierpińskis konstant en matematisk konstant, vanligen betecknad med K. Den definieras som gränsvärdet där r2(k) är antalet representationer av k som summan av två kvadrater. Den kan skrivas i sluten form som Konstanten är uppkallad efter Wacław Sierpiński. (sv)
  • Stała Sierpińskiego – stała matematyczna oznaczana na ogół jako K, którą można zdefiniować jako granicę: gdzie wyraża, na ile sposobów można przedstawić jako dla i naturalnych. Jej przybliżona wartość wynosi: ≈ 2,58498 17595 79253 21706 58935... (pl)
  • Sierpiński's constant is a mathematical constant usually denoted as K. One way of defining it is as the following limit: where r2(k) is a number of representations of k as a sum of the form a2 + b2 for integer a and b. It can be given in closed form as: where is Gauss's constant and is the Euler-Mascheroni constant. Another way to define/understand Sierpiński's constant is, Let r(n) denote the number of representations of by squares, then the Summatory Function of has the Asymptotic expansion , where is the Sierpinski constant. The above plot shows , (en)
rdfs:label
  • Sierpiński-Konstante (de)
  • Constante de Sierpiński (fr)
  • 시에르핀스키 상수 (ko)
  • Sierpiński's constant (en)
  • Stała Sierpińskiego (pl)
  • Sierpińskis konstant (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License