An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Shintani's unit theorem introduced by Shintani is a refinement of Dirichlet's unit theorem and states that a subgroup of finite index of the totally positive units of a number field has a fundamental domain given by a rational polyhedric cone in the Minkowski space of the field .

Property Value
dbo:abstract
  • In mathematics, Shintani's unit theorem introduced by Shintani is a refinement of Dirichlet's unit theorem and states that a subgroup of finite index of the totally positive units of a number field has a fundamental domain given by a rational polyhedric cone in the Minkowski space of the field . (en)
  • Inom matematiken är Shintanis enhetssats, introducerad av , en förfining av som säger att för en delgrupp av ändligt index av de totalt positiva enheterna av en talkropp ges fundamentaldomänen av en rationell polyhedral kon i av kroppen . (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 39177646 (xsd:integer)
dbo:wikiPageLength
  • 1460 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 961794045 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Takuro Shintani (en)
dbp:last
  • Shintani (en)
dbp:loc
  • proposition 4 (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1976 (xsd:integer)
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, Shintani's unit theorem introduced by Shintani is a refinement of Dirichlet's unit theorem and states that a subgroup of finite index of the totally positive units of a number field has a fundamental domain given by a rational polyhedric cone in the Minkowski space of the field . (en)
  • Inom matematiken är Shintanis enhetssats, introducerad av , en förfining av som säger att för en delgrupp av ändligt index av de totalt positiva enheterna av en talkropp ges fundamentaldomänen av en rationell polyhedral kon i av kroppen . (sv)
rdfs:label
  • Shintani's unit theorem (en)
  • Shintanis enhetssats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License