An Entity of Type: anatomical structure, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics a regular Hadamard matrix is a Hadamard matrix whose row and column sums are all equal. While the order of a Hadamard matrix must be 1, 2, or a multiple of 4, regular Hadamard matrices carry the further restriction that the order be a square number. The excess, denoted E(H), of a Hadamard matrix H of order n is defined to be the sum of the entries of H. The excess satisfies the bound|E(H)| ≤ n3/2. A Hadamard matrix attains this bound if and only if it is regular.

Property Value
dbo:abstract
  • In mathematics a regular Hadamard matrix is a Hadamard matrix whose row and column sums are all equal. While the order of a Hadamard matrix must be 1, 2, or a multiple of 4, regular Hadamard matrices carry the further restriction that the order be a square number. The excess, denoted E(H), of a Hadamard matrix H of order n is defined to be the sum of the entries of H. The excess satisfies the bound|E(H)| ≤ n3/2. A Hadamard matrix attains this bound if and only if it is regular. (en)
  • Регулярная матрица Адамара — это матрица Адамара, у которой суммы по строкам и столбцам равны. В то время как порядок матрицы Адамара должен быть 1, 2 или кратен 4, регулярные матрицы Адамара удовлетворяют дальнейшим ограничениям, что порядок равен полному квадрату. Избыток, обозначаемый E(H), матрицы Адамара H порядка n определяется как сумма элементов матрицы H. Избыток удовлетворяет ограничению. Матрица Адамара достигает этой границы тогда и только тогда, когда она регулярна. (ru)
dbo:wikiPageID
  • 11338044 (xsd:integer)
dbo:wikiPageLength
  • 2615 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1049552919 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics a regular Hadamard matrix is a Hadamard matrix whose row and column sums are all equal. While the order of a Hadamard matrix must be 1, 2, or a multiple of 4, regular Hadamard matrices carry the further restriction that the order be a square number. The excess, denoted E(H), of a Hadamard matrix H of order n is defined to be the sum of the entries of H. The excess satisfies the bound|E(H)| ≤ n3/2. A Hadamard matrix attains this bound if and only if it is regular. (en)
  • Регулярная матрица Адамара — это матрица Адамара, у которой суммы по строкам и столбцам равны. В то время как порядок матрицы Адамара должен быть 1, 2 или кратен 4, регулярные матрицы Адамара удовлетворяют дальнейшим ограничениям, что порядок равен полному квадрату. Избыток, обозначаемый E(H), матрицы Адамара H порядка n определяется как сумма элементов матрицы H. Избыток удовлетворяет ограничению. Матрица Адамара достигает этой границы тогда и только тогда, когда она регулярна. (ru)
rdfs:label
  • Regular Hadamard matrix (en)
  • Регулярная матрица Адамара (ru)
  • Регулярна матриця Адамара (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License