dbo:abstract
|
- En geometría, el tetraedro de Reeve (nombrado así en honor a ) es un poliedro en R3 cuyos vértices están ubicados en (0, 0, 0), (1, 0, 0), (0, 1, 0) y (1, 1, r) donde r es un entero positivo. Cada vértice es un punto en la retícula Z3. Ningún otro punto de esa retícula cae en la superficie o en el interior del tetraedro. En 1957, Reeve usó este tetraedro como contraejemplo para mostrar que no existe ningún equivalente del teorema de Pick en R3. Sin embargo, existe una generalización en dimensiones superiores mediante . Esto se puede ver fijándose que el tetraedro de Reeve tiene el mismo número de puntos interiores y de borde para cualquier valor de r (cuatro puntos en los bordes y ninguno en el interior), pero su volumen varía. El volumen del tetraedro de Reeve es . (es)
- In geometry, the Reeve tetrahedron is a polyhedron, in three-dimensional space with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, r) where r is a positive integer. It is named after , who used it to show that higher-dimensional generalizations of Pick's theorem do not exist. (en)
- У геометрії тетраедр Ріва — це багатогранник в тривимірному просторі з вершинами в точках , , і , де — натуральне число. Він названий на честь Джона Ріва, який використав його, щоб показати, що не існує багатовимірних узагальнень теореми Піка. (uk)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3713 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- En geometría, el tetraedro de Reeve (nombrado así en honor a ) es un poliedro en R3 cuyos vértices están ubicados en (0, 0, 0), (1, 0, 0), (0, 1, 0) y (1, 1, r) donde r es un entero positivo. Cada vértice es un punto en la retícula Z3. Ningún otro punto de esa retícula cae en la superficie o en el interior del tetraedro. En 1957, Reeve usó este tetraedro como contraejemplo para mostrar que no existe ningún equivalente del teorema de Pick en R3. Sin embargo, existe una generalización en dimensiones superiores mediante . Esto se puede ver fijándose que el tetraedro de Reeve tiene el mismo número de puntos interiores y de borde para cualquier valor de r (cuatro puntos en los bordes y ninguno en el interior), pero su volumen varía. El volumen del tetraedro de Reeve es . (es)
- In geometry, the Reeve tetrahedron is a polyhedron, in three-dimensional space with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, r) where r is a positive integer. It is named after , who used it to show that higher-dimensional generalizations of Pick's theorem do not exist. (en)
- У геометрії тетраедр Ріва — це багатогранник в тривимірному просторі з вершинами в точках , , і , де — натуральне число. Він названий на честь Джона Ріва, який використав його, щоб показати, що не існує багатовимірних узагальнень теореми Піка. (uk)
|
rdfs:label
|
- Tetraedro de Reeve (es)
- Reeve tetrahedron (en)
- Тетраедр Ріва (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |