An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, in semigroup theory, a Rees factor semigroup (also called Rees quotient semigroup or just Rees factor), named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup. Let S be a semigroup and I be an ideal of S. Using S and I one can construct a new semigroup by collapsing I into a single element while the elements of S outside of I retain their identity. The new semigroup obtained in this way is called the Rees factor semigroup of S modulo I and is denoted by S/I.

Property Value
dbo:abstract
  • In mathematics, in semigroup theory, a Rees factor semigroup (also called Rees quotient semigroup or just Rees factor), named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup. Let S be a semigroup and I be an ideal of S. Using S and I one can construct a new semigroup by collapsing I into a single element while the elements of S outside of I retain their identity. The new semigroup obtained in this way is called the Rees factor semigroup of S modulo I and is denoted by S/I. The concept of Rees factor semigroup was introduced by David Rees in 1940. (en)
  • Em matemática, na teoria de semigrupos, um semigrupo fator de Rees (também chamado de semigrupo quociente de Rees ou apenas fator de Rees), assim chamado em referência a David Rees, é um certo tipo de semigrupo construído usando um semigrupo e um ideal do semigrupo. Seja S um semigrupo e seja I um ideal de S. Usando S e I, pode-se construir um novo semigrupo fundindo I em um único elemento, e mantendo a identidade dos elementos de S fora de I. O novo semigrupo obtido desta forma é chamado de semigrupo fator de Rees de S módulo I e é denotado por S/I. O conceito de semigrupo fator de Rees foi introduzido por David Rees em 1940. (pt)
  • Kongruencje Reesa - rodzaj kongruencji w teorii półgrup. Nazwa pochodzi od nazwiska Davida Reesa. Kongruencje Reesa zadawane są przez ideały półgrupy, podobnie jak kongruencje w pierścieniach. Jednak nie wszystkie kongruencje w półgrupach są kongruencjami Reesa. (pl)
dbo:wikiPageID
  • 22795102 (xsd:integer)
dbo:wikiPageLength
  • 6224 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118858753 (xsd:integer)
dbo:wikiPageWikiLink
dbp:id
  • 3517 (xsd:integer)
dbp:title
  • Rees factor (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Kongruencje Reesa - rodzaj kongruencji w teorii półgrup. Nazwa pochodzi od nazwiska Davida Reesa. Kongruencje Reesa zadawane są przez ideały półgrupy, podobnie jak kongruencje w pierścieniach. Jednak nie wszystkie kongruencje w półgrupach są kongruencjami Reesa. (pl)
  • In mathematics, in semigroup theory, a Rees factor semigroup (also called Rees quotient semigroup or just Rees factor), named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup. Let S be a semigroup and I be an ideal of S. Using S and I one can construct a new semigroup by collapsing I into a single element while the elements of S outside of I retain their identity. The new semigroup obtained in this way is called the Rees factor semigroup of S modulo I and is denoted by S/I. (en)
  • Em matemática, na teoria de semigrupos, um semigrupo fator de Rees (também chamado de semigrupo quociente de Rees ou apenas fator de Rees), assim chamado em referência a David Rees, é um certo tipo de semigrupo construído usando um semigrupo e um ideal do semigrupo. Seja S um semigrupo e seja I um ideal de S. Usando S e I, pode-se construir um novo semigrupo fundindo I em um único elemento, e mantendo a identidade dos elementos de S fora de I. O novo semigrupo obtido desta forma é chamado de semigrupo fator de Rees de S módulo I e é denotado por S/I. (pt)
rdfs:label
  • Rees factor semigroup (en)
  • Kongruencje Reesa (pl)
  • Semigrupo fator de Rees (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License