dbo:abstract
|
- In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of by (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board (see for definition). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy which can be seen as an analog of Fermat's little theorem. Further, the equation has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem.Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as . (en)
- Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4414 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv)
- In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy (en)
|
rdfs:label
|
- Poly-Bernoulli number (en)
- Polybernoullital (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |