An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy

Property Value
dbo:abstract
  • In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of by (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board (see for definition). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy which can be seen as an analog of Fermat's little theorem. Further, the equation has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem.Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as . (en)
  • Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3492608 (xsd:integer)
dbo:wikiPageLength
  • 4414 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1122566170 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Inom matematiken är polybernoullitalen, introducerade av , tal som definieras som där Li är polylogaritmen. är de vanliga Bernoullitalen. Två intressanta formler av Kaneko är och där Stirlingtalen av andra ordningen. (sv)
  • In mathematics, poly-Bernoulli numbers, denoted as , were defined by M. Kaneko as where Li is the polylogarithm. The are the usual Bernoulli numbers. Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows where Li is the polylogarithm. Kaneko also gave two combinatorial formulas: where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind). The Poly-Bernoulli number satisfies the following asymptotic: For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy (en)
rdfs:label
  • Poly-Bernoulli number (en)
  • Polybernoullital (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License