An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In graph theory, a perfectly orderable graph is a graph whose vertices can be ordered in such a way that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph. Perfectly orderable graphs form a special case of the perfect graphs, and they include the chordal graphs, comparability graphs, and distance-hereditary graphs. However, testing whether a graph is perfectly orderable is NP-complete.

Property Value
dbo:abstract
  • In graph theory, a perfectly orderable graph is a graph whose vertices can be ordered in such a way that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph. Perfectly orderable graphs form a special case of the perfect graphs, and they include the chordal graphs, comparability graphs, and distance-hereditary graphs. However, testing whether a graph is perfectly orderable is NP-complete. (en)
  • У теорії графів цілком упорядковуваний граф — це граф, вершини якого можна впорядкувати так, що алгоритм жадібного розфарбовування з цим упорядкуванням оптимально розфарбовує будь-який породжений підграф даного графу. Відповідне впорядкування називається досконалим. Цілком упорядковувані графи утворюють підклас досконалих графів і в цей підклас входять хордальні графи, графи порівнянності і дистанційно-успадковувані графи. Однак перевірка, чи є граф цілком упорядковуваним, є NP-повною задачею. (uk)
  • В теории графов вполне упорядочиваемый граф — это граф, вершины которого можно упорядочить так, что алгоритм жадной раскраски с этим упорядочением оптимально раскрашивает любой порождённый подграф заданного графа. Соответствующее упорядочение называется совершенным. Вполне упорядочиваемые графы образуют подкласс совершенных графов и в это подкласс входят хордальные графы, графы сравнимости и дистанционно-наследуемые графы. Однако проверка, является ли граф вполне упорядочиваемым, есть NP-полная задача. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21051205 (xsd:integer)
dbo:wikiPageLength
  • 10268 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032107611 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In graph theory, a perfectly orderable graph is a graph whose vertices can be ordered in such a way that a greedy coloring algorithm with that ordering optimally colors every induced subgraph of the given graph. Perfectly orderable graphs form a special case of the perfect graphs, and they include the chordal graphs, comparability graphs, and distance-hereditary graphs. However, testing whether a graph is perfectly orderable is NP-complete. (en)
  • У теорії графів цілком упорядковуваний граф — це граф, вершини якого можна впорядкувати так, що алгоритм жадібного розфарбовування з цим упорядкуванням оптимально розфарбовує будь-який породжений підграф даного графу. Відповідне впорядкування називається досконалим. Цілком упорядковувані графи утворюють підклас досконалих графів і в цей підклас входять хордальні графи, графи порівнянності і дистанційно-успадковувані графи. Однак перевірка, чи є граф цілком упорядковуваним, є NP-повною задачею. (uk)
  • В теории графов вполне упорядочиваемый граф — это граф, вершины которого можно упорядочить так, что алгоритм жадной раскраски с этим упорядочением оптимально раскрашивает любой порождённый подграф заданного графа. Соответствующее упорядочение называется совершенным. Вполне упорядочиваемые графы образуют подкласс совершенных графов и в это подкласс входят хордальные графы, графы сравнимости и дистанционно-наследуемые графы. Однако проверка, является ли граф вполне упорядочиваемым, есть NP-полная задача. (ru)
rdfs:label
  • Perfectly orderable graph (en)
  • Вполне упорядочиваемый граф (ru)
  • Цілком упорядковуваний граф (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License