In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets. Given a set , a collection of subsets is called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is,for any , and any finite partition , there exists an i ≤ n, such that belongs to . Ramsey theory is sometimes characterized as the study of which collections are partition regular.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |