In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch. According to , an approximate formula for the capacity of a sealed expanded bag is: where w is the width of the bag (the shorter dimension), h is the height (the longer dimension), and V is the maximum volume. The approximation ignores the crimping round the equator of the bag.
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:title |
|
dbp:urlname |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |