An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, Nash blowing-up is a process in which, roughly speaking, each singular point is replaced by all limiting positions of the tangent spaces at the non-singular points. More formally, let be an algebraic variety of pure dimension r embedded in a smooth variety of dimension n, and let be the complement of the singular locus of . Define a map , where is the Grassmannian of r-planes in the tangent bundle of , by , where is the tangent space of at . The closure of the image of this map together with the projection to is called the Nash blow-up of .

Property Value
dbo:abstract
  • In algebraic geometry, Nash blowing-up is a process in which, roughly speaking, each singular point is replaced by all limiting positions of the tangent spaces at the non-singular points. More formally, let be an algebraic variety of pure dimension r embedded in a smooth variety of dimension n, and let be the complement of the singular locus of . Define a map , where is the Grassmannian of r-planes in the tangent bundle of , by , where is the tangent space of at . The closure of the image of this map together with the projection to is called the Nash blow-up of . Although the above construction uses an embedding, the Nash blow-up itself is unique up to unique isomorphism. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25547443 (xsd:integer)
dbo:wikiPageLength
  • 2654 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1115550446 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • In algebraic geometry, Nash blowing-up is a process in which, roughly speaking, each singular point is replaced by all limiting positions of the tangent spaces at the non-singular points. More formally, let be an algebraic variety of pure dimension r embedded in a smooth variety of dimension n, and let be the complement of the singular locus of . Define a map , where is the Grassmannian of r-planes in the tangent bundle of , by , where is the tangent space of at . The closure of the image of this map together with the projection to is called the Nash blow-up of . (en)
rdfs:label
  • Nash blowing-up (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License