An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: * , * for all . In other words, S is closed under taking finite products, including the empty product 1.Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings.

Property Value
dbo:abstract
  • Multiplikativní množina (také množina uzavřená na násobení nebo podmnožina uzavřená na násobení) je pojem z , podoboru abstraktní algebry. V rámci okruhu se multiplikativní podmnožinou rozumí taková podmnožina okruhu , která splňuje: * * Tato množina je tedy jednak na konečná násobení a jednak obsahuje i , tedy neutrální prvek vůči násobení. Definice lze přeformulovat pomocí pojmu monoid – jedná se o podmonoid násobení v daném okruhu. Typickým využitím multiplikativních množin v komutativní algebře je vytváření . (cs)
  • Dado un anillo conmutativo y unitario A. Un subconjunto S de A se dice que es multiplicativamente cerrado si verifica: * * para cualesquiera (es)
  • In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: * , * for all . In other words, S is closed under taking finite products, including the empty product 1.Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. A subset S of a ring R is called saturated if it is closed under taking divisors: i.e., whenever a product xy is in S, the elements x and y are in S too. (en)
  • 抽象代数学における積閉集合(せきへいしゅうごう、英: multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、英: multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21653550 (xsd:integer)
dbo:wikiPageLength
  • 2980 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089744474 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Multiplikativní množina (také množina uzavřená na násobení nebo podmnožina uzavřená na násobení) je pojem z , podoboru abstraktní algebry. V rámci okruhu se multiplikativní podmnožinou rozumí taková podmnožina okruhu , která splňuje: * * Tato množina je tedy jednak na konečná násobení a jednak obsahuje i , tedy neutrální prvek vůči násobení. Definice lze přeformulovat pomocí pojmu monoid – jedná se o podmonoid násobení v daném okruhu. Typickým využitím multiplikativních množin v komutativní algebře je vytváření . (cs)
  • Dado un anillo conmutativo y unitario A. Un subconjunto S de A se dice que es multiplicativamente cerrado si verifica: * * para cualesquiera (es)
  • 抽象代数学における積閉集合(せきへいしゅうごう、英: multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、英: multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。 (ja)
  • In abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: * , * for all . In other words, S is closed under taking finite products, including the empty product 1.Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. (en)
rdfs:label
  • Multiplikativní množina (cs)
  • Conjunto multiplicativamente cerrado (es)
  • 積閉集合 (ja)
  • Multiplicatively closed set (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License