An Entity of Type: Magnitude105090441, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the multicomplex number systems are defined inductively as follows: Let C0 be the real number system. For every n > 0 let in be a square root of −1, that is, an imaginary unit. Then . In the multicomplex number systems one also requires that (commutativity). Then is the complex number system, is the bicomplex number system, is the tricomplex number system of Corrado Segre, and is the multicomplex number system of order n. Each forms a Banach algebra. G. Bayley Price has written about the function theory of multicomplex systems, providing details for the bicomplex system

Property Value
dbo:abstract
  • In mathematics, the multicomplex number systems are defined inductively as follows: Let C0 be the real number system. For every n > 0 let in be a square root of −1, that is, an imaginary unit. Then . In the multicomplex number systems one also requires that (commutativity). Then is the complex number system, is the bicomplex number system, is the tricomplex number system of Corrado Segre, and is the multicomplex number system of order n. Each forms a Banach algebra. G. Bayley Price has written about the function theory of multicomplex systems, providing details for the bicomplex system The multicomplex number systems are not to be confused with Clifford numbers (elements of a Clifford algebra), since Clifford's square roots of −1 anti-commute ( when m ≠ n for Clifford). Because the multicomplex numbers have several square roots of –1 that commute, they also have zero divisors: despite and , and despite and . Any product of two distinct multicomplex units behaves as the of the split-complex numbers, and therefore the multicomplex numbers contain a number of copies of the split-complex number plane. With respect to subalgebra , k = 0, 1, ..., n − 1, the multicomplex system is of dimension 2n − k over (en)
  • En mathématiques, les nombres multicomplexes de symbole (n ∈ ℕ) constituent une famille d’algèbres hypercomplexes associatives et commutatives de dimension 2n sur ℝ.Ils ont été introduits par Corrado Segre en 1892. (fr)
  • 数学における多重複素数(たじゅうふくそすう、英: Multi­complex number)ℂn は、 が導入した、各自然数(0 を含む) n ∈ ℕ に対して定義される超複素数系の系列で、それぞれは ℝ 上 2n-次元の結合多元環を成す。 (ja)
  • 在数学中,多重复数系Cn定义如下: 令C0为实数系。F对每个n>0,令in为-1的平方根,然后。在多重复数系中还需要 (交换律)。 这样C1就是复数系,C2是双复数系,C3是科拉多塞格雷的三复数系,而Cn是n阶的多重复数。 每个Cn形成一个。G. Bayley Price已写有关于多重复数的函数论,提供了双复数系C2的一些性质。 多重复数系不能和克利福德代数混淆。因为克利福德代数里-1的平方根是反交换的()。 与Ck的关系(k = 0, 1, ... n−1):多重复数系Cn在Ck上的维数为2n−k。 (zh)
dbo:wikiPageID
  • 6339361 (xsd:integer)
dbo:wikiPageLength
  • 2485 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1061170801 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • En mathématiques, les nombres multicomplexes de symbole (n ∈ ℕ) constituent une famille d’algèbres hypercomplexes associatives et commutatives de dimension 2n sur ℝ.Ils ont été introduits par Corrado Segre en 1892. (fr)
  • 数学における多重複素数(たじゅうふくそすう、英: Multi­complex number)ℂn は、 が導入した、各自然数(0 を含む) n ∈ ℕ に対して定義される超複素数系の系列で、それぞれは ℝ 上 2n-次元の結合多元環を成す。 (ja)
  • 在数学中,多重复数系Cn定义如下: 令C0为实数系。F对每个n>0,令in为-1的平方根,然后。在多重复数系中还需要 (交换律)。 这样C1就是复数系,C2是双复数系,C3是科拉多塞格雷的三复数系,而Cn是n阶的多重复数。 每个Cn形成一个。G. Bayley Price已写有关于多重复数的函数论,提供了双复数系C2的一些性质。 多重复数系不能和克利福德代数混淆。因为克利福德代数里-1的平方根是反交换的()。 与Ck的关系(k = 0, 1, ... n−1):多重复数系Cn在Ck上的维数为2n−k。 (zh)
  • In mathematics, the multicomplex number systems are defined inductively as follows: Let C0 be the real number system. For every n > 0 let in be a square root of −1, that is, an imaginary unit. Then . In the multicomplex number systems one also requires that (commutativity). Then is the complex number system, is the bicomplex number system, is the tricomplex number system of Corrado Segre, and is the multicomplex number system of order n. Each forms a Banach algebra. G. Bayley Price has written about the function theory of multicomplex systems, providing details for the bicomplex system (en)
rdfs:label
  • Nombre multicomplexe (Segre) (fr)
  • セグレの多重複素数 (ja)
  • Multicomplex number (en)
  • 多重复数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License