An Entity of Type: building, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature ⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃x ≥ x * ∃(x + y) = ∃x + ∃y * ∃x∃y = ∃(x∃y). ∃x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀x := (∃x' )'. 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y).

Property Value
dbo:abstract
  • In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature ⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃x ≥ x * ∃(x + y) = ∃x + ∃y * ∃x∃y = ∃(x∃y). ∃x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀x := (∃x' )'. A monadic Boolean algebra has a dual definition and notation that take ∀ as primitive and ∃ as defined, so that ∃x := (∀x ' )' . (Compare this with the definition of the dual Boolean algebra.) Hence, with this notation, an algebra A has signature ⟨·, +, ', 0, 1, ∀⟩, with ⟨A, ·, +, ', 0, 1⟩ a Boolean algebra, as before. Moreover, ∀ satisfies the following dualized version of the above identities: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x is the universal closure of x. (en)
  • Monadyczna algebra Boole’a – algebra Boole’a z dodatkowym działaniem jednoargumentowym które spełnia pewne warunki naśladujące własności kwantyfikatora egzystencjalnego. (pl)
  • 在抽象代数中,一元布尔代数是带有如下(signature)的代数结构 <A, ·, +, ', 0, 1, ∃> 有型 <2,2,1,0,0,1>, 这里的 <A, ·, +, ', 0, 1> 是布尔代数。 前缀一元算子 ∃ 指示存在量词,它满足恒等式: 1. * ∃0 = 0 2. * ∃x ≥ x 3. * ∃(x + y) = ∃x + ∃y 4. * ∃x∃y = ∃(x∃y). ∃x 是 x 的“存在闭包”。于 ∃ 的是一元算子 ∀,它是全称量词,定义为 ∀x := (∃x' )'。 一元布尔代数有公式,取 ∀ 为原始,把 ∃ 定义为 ∃x := (∀x ' )' 。所以对偶的代数有标识 <A, ·, +, ', 0, 1, ∀>,带有 <A, ·, +, ', 0, 1> 是布尔代数。此外,∀ 满足上面恒等式的对偶版本: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x 是 x 的“全称闭包”。 (zh)
dbo:wikiPageID
  • 1018197 (xsd:integer)
dbo:wikiPageLength
  • 3749 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1014607548 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Monadyczna algebra Boole’a – algebra Boole’a z dodatkowym działaniem jednoargumentowym które spełnia pewne warunki naśladujące własności kwantyfikatora egzystencjalnego. (pl)
  • 在抽象代数中,一元布尔代数是带有如下(signature)的代数结构 <A, ·, +, ', 0, 1, ∃> 有型 <2,2,1,0,0,1>, 这里的 <A, ·, +, ', 0, 1> 是布尔代数。 前缀一元算子 ∃ 指示存在量词,它满足恒等式: 1. * ∃0 = 0 2. * ∃x ≥ x 3. * ∃(x + y) = ∃x + ∃y 4. * ∃x∃y = ∃(x∃y). ∃x 是 x 的“存在闭包”。于 ∃ 的是一元算子 ∀,它是全称量词,定义为 ∀x := (∃x' )'。 一元布尔代数有公式,取 ∀ 为原始,把 ∃ 定义为 ∃x := (∀x ' )' 。所以对偶的代数有标识 <A, ·, +, ', 0, 1, ∀>,带有 <A, ·, +, ', 0, 1> 是布尔代数。此外,∀ 满足上面恒等式的对偶版本: 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). ∀x 是 x 的“全称闭包”。 (zh)
  • In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature ⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩, where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra. The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃): * ∃0 = 0 * ∃x ≥ x * ∃(x + y) = ∃x + ∃y * ∃x∃y = ∃(x∃y). ∃x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as ∀x := (∃x' )'. 1. * ∀1 = 1 2. * ∀x ≤ x 3. * ∀(xy) = ∀x∀y 4. * ∀x + ∀y = ∀(x + ∀y). (en)
rdfs:label
  • Monadic Boolean algebra (en)
  • Monadyczna algebra Boole’a (pl)
  • 一元布尔代数 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License