An Entity of Type: chemical compound, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A molecular sensor or chemosensor is a molecular structure (organic or inorganic complexes) that is used for sensing of an analyte to produce a detectable change or a signal. The action of a chemosensor, relies on an interaction occurring at the molecular level, usually involves the continuous monitoring of the activity of a chemical species in a given matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc. The application of chemosensors is referred to as chemosensing, which is a form of molecular recognition. All chemosensors are designed to contain a signalling moiety and a recognition moiety, that is connected either directly to each other or through a some kind of connector or a spacer. The signalling is often optically based electromagnetic radiation, givin

Property Value
dbo:abstract
  • يمثل المستشعر الجزيئي (بالإنجليزية: molecular sensor)‏ أو المستشعر الكيميائي (كيموسنسور) (بالإنجليزية: chemosensor)‏ جزيئاً يتفاعل مع الأنالايت بهدف الحصول على تغيراً مؤغوباً أو متوقعاً. حيث تصاحب المستشعرات الجزيئية عملية التعرف الجزيئي (بالإنجليزية: molecular recognition)‏ مع صورةٍ ما من التقرير، ولذلك فإنه يمكن ملاحظة وجود الضيف. وقد صياغة مصطلح الكيمياء التحليلية الجزيئية الفائقة (بالإنجليزية: supramolecular analytical chemistry)‏ حديثاً لوصف تطبيقات المستشعرات الجزيئية في مجال الكيمياء التحليلية. وتمثلت الأمثلة المبكرة على المستشعرات الجزيئية في (بالإنجليزية: crown ether)‏ ذات التقارب الكبير لأيونات الصوديوم ولكن ليس الحال كذلك لأيونات البوتاسيوم بالإضافة إلى أشكال الاكتشاف المعدني من خلال ما يُطلق عليه complexones وهي عبارة عن مؤشرات الأس الهيدروجيني المعدلة مع مجموعات الجزيئات الحساسة للمعادن. وهنا يكرر مفهوم المستقبل – الفاصل- المراسل من الفكرة الرئيسية غالباً مع المراسل المستعرض لنقل الإلكترون بالأشعة الضوئية (بالإنجليزية: photoinduced electron transfer)‏. ويُعَدُ المستشعر الحساس للهيبارين أحد تلك الأمثلة. مع ملاحظة أن باقي المستشعرات ليست حساسة لجزيءٍ بعينه، ولكن لفئة مركب جزيئي. ومن أحد الأمثلة على ذلك، التحليل المجموعي للعديد من (بالإنجليزية: tannic acid)‏ والتي تتجمع في ويسكي سكوتش المعتَّق في براميل البلوط. حيث أوضحت النتائج المجمعة علاقةً ارتباطيةً مع السن أو العمر، إلا أن العناصر المفردة فلم تُظهر مثل تلك العلاقة. هذا ويمك استخدام مستقبلٍ آخرٍ لتحليل معدلات اللذوعة في الخمر. كما يُعَدُ مركب من السموم العصبية والموجود في المحار والذي يستخدم كساحٍ كيميائيٍ. حيث بُنِيَ مستشعراً تجريبياً لهذا المركَّب على PET. مع ملاحظة أن تفاعل saxitoxin مع شرود لهذا المستشعر والذي يقتل عملية PET صوب والفلوريات يتحول إلى حالة التشغيل. هذا ويؤكد شذوذ البورون غير التقليدي أن الفلوريات تحدث في منطقة الضوء المرئي من الطيف الكهرومغناطيسي. وفس استراتيجيةٍ أخرى يُطلق عليها تجربة إزاحة- المؤشر (بالإنجليزية: indicator-displacement assay)‏، حيث يحل الأنالايت مثل أيونات السيترات أو الفوسفات محل مؤشر الفلوروسنت في مركب المؤشر- الضيف. وتُعَدُ شريحة تزوق جامعة تكساس (بالإنجليزية: UT taste chip)‏ أحد نماذج اللسان الإلكتروني والتي تصاحب الكيمياء الجزيئية الفائقة مع القائم على رقائق السليكون وجزيئات المستقبل الثابتة. (ar)
  • Ein Molekularer Sensor oder Chemosensor ist ein Molekül, das bei der Wechselwirkung mit einem Analyten eine detektierbare Änderung zeigt. Molekulare Sensoren kombinieren die molekulare Erkennung mit einer Form von Aufzeichnung, so dass beispielsweise bei einem Wirtmolekül die Anwesenheit eines Gastes beobachtet werden kann. Der Begriff Supramolekulare analytische Chemie wurde kürzlich verwendet, um die Anwendung molekularer Sensoren in der analytischen Chemie zu beschreiben. Frühere Beispiele molekularer Sensoren sind Kronenether mit einer großen Affinität zu Natriumionen, aber nicht für Kaliumionen, und Formen der Metallerkennung, sogenannte Komplexone: Die traditionellen pH-Indikatoren werden mit funktionellen Gruppen versehen, so dass sie Metallionen detektieren können.Dieses Receptor-spacer-reporter-Konzept wird diskutiert auf der Grundlage von photoinduziertem Elektronentransfer (PET). Ein Beispiel hierfür ist der Sensor für Heparin. Es gibt Rezeptoren, die nicht für ein Molekül spezifisch sind, sondern für eine Substanzklasse von Verbindungen.Ein Beispiel hierfür ist die Analyse verschiedener Gerbstoffe, wie beispielsweise Tannin, die bei altem Whisky in Eichenfässern entstehen. Man kann eine Korrelation zum Alter des Whiskys erkennen. Ein ähnlicher Rezeptor erkennt Tartrate in Wein. Die Substanz Saxitoxin ist ein Neurotoxin (Nervengift), das man in Schalentieren und in chemischen Waffen findet. Für diese Substanz wurde ein Sensor gefunden, ebenso basierend auf PET. Wechselwirkungen des Saxitoxins mit dem Kronenetherteil des Sensors führt über einen PET-Prozess zur Fluoreszenzlöschung beim Fluorophor des Sensors und schaltet diesen so aus und ein. Bei einer anderen Strategie, die sich Indikator-Ersatz-Probe (IDA=indicator displacement assay) nennt, ersetzt der Analyt, wie beispielsweise ein Citrat- oder Phosphation, den Fluoreszenzindikator im Indikator-Wirt-Komplex. (de)
  • A molecular sensor or chemosensor is a molecular structure (organic or inorganic complexes) that is used for sensing of an analyte to produce a detectable change or a signal. The action of a chemosensor, relies on an interaction occurring at the molecular level, usually involves the continuous monitoring of the activity of a chemical species in a given matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc. The application of chemosensors is referred to as chemosensing, which is a form of molecular recognition. All chemosensors are designed to contain a signalling moiety and a recognition moiety, that is connected either directly to each other or through a some kind of connector or a spacer. The signalling is often optically based electromagnetic radiation, giving rise to changes in either (or both) the ultraviolet and visible absorption or the emission properties of the sensors. Chemosensors may also be electrochemically based. Small molecule sensors are related to chemosensors. These are traditionally, however, considered as being structurally simple molecules and reflect the need to form chelating molecules for complexing ions in analytical chemistry. Chemosensors are synthetic analogues of biosensors, the difference being that biosensors incorporate biological receptors such as antibodies, aptamers or large biopolymers. Chemosensors describes molecule of synthetic origin that signal the presence of matter or energy. A chemosensor can be considered as type of an analytical device. Chemosensors are used in everyday life and have been applied to various areas such as in chemistry, biochemistry, immunology, physiology, etc. and within medicine in general, such as in critical care analysis of blood samples. Chemosensors can be designed to detect/signal a single analyte or a mixture of such species in solution. This can be achieved through either a single measurement or through the use of continuous monitoring. The signalling moiety acts as a signal transducer, converting the information (recognition event between the chemosensor and the analyte) into an optical response in a clear and reproducible manner. Most commonly, the change (the signal) is observed by measuring the various physical properties of the chemosensor, such as the photo-physical properties seen in the absorption or emission, where different wavelengths of the electromagnetic spectrum are used. Consequently, most chemosensors are described as being either colorimetric (ground state) or luminescent (excited state, fluorescent or phosphorescent). Colorimetric chemosensors give rise to changes in their absorption properties (recorded using ultraviolet–visible spectroscopy), such as in absorption intensity and wavelength or in chirality (using circularly polarized light, and CD spectroscopy). In contrast, then in the case of luminescent chemosensors, the detection of an analyte, using fluorescence spectroscopy, gives rise to spectral changes in the fluorescence excitation or in the emission spectra, which are recorded using a fluorimeter. Such changes can also occur in other excited state properties such as in the excited state life-time(s), quantum yield of fluorescence, and polarisation, etc. of the chemosensor. Fluorescence detection can be achieved at a low concentration (below ~ 10-6 M) with most fluorescence spectrometers. This offers the advantage of using the sensors directly within fibre optic systems. Examples of the use of chemosensors are to monitor blood content, drug concentrations, etc., as well as in environmental samples. Ions and molecules occur in abundance in biological and environmental systems where they are involved/effete biological and chemical processes. The development of molecular chemosensors as probes for such analytes is an annual multibillion-dollar business involving both small SMEs as well as large pharmaceutical and chemical companies. Chemosensors were first used to describe the combination of a molecular recognition with some form of reporter so the presence of a guest can be observed (also referred to as the analyte, c.f. above). Chemosensors are designed to contain a signalling moiety and a molecular recognition moiety (also called the binding site or a receptor). Combining both of these components can be achieved in a number of ways, such as integrated, twisted or spaced. Chemosensors are consider as major component of the area of molecular diagnostics, within the discipline of supramolecular chemistry, which relies on molecular recognition. In terms of supramolecular chemistry, chemosensing is an example of host–guest chemistry, where the presence of a guest (the analyte) at the host site (the sensor) gives rise to recognition event (e.g. sensing) that can be monitored in real time. This requires the binding of the analyte to the receptor, using all kinds of binding interactions such as hydrogen bonding, dipole- and electrostatic interactions, solvophobic effect, metal chelation, etc. The recognition/binding moiety is responsible for selectivity and efficient binding of the guest/analyte, which depend on ligand topology, characteristics of the target (ionic radius, size of molecule, chirality, charge, coordination number and hardness, etc.) and the nature of the solvent (pH, ionic strength, polarity). Chemosensors are normally developed to be able to interact with the target species in reversible manner, which is a prerequisite for continuous monitoring. Optical signalling methods (such as fluorescence) are sensitive and selective, and provide a platform for real-time response, and local observation. As chemosensors are designed to be both targeting (i.e. can recognize and bind a specific species) and sensitive to various concentration ranges, they can be used to observed real-live events on the cellular level. As each molecule can give rise to a signal/readout, that can be selectively measured, chemosensors are often said to be non-invasive and consequently have attracted significant attentions for their applications within biological matter, such as within living cells. Many examples of chemosensors have been developed for observing cellular function and properties, including monitoring ion flux concentrations and transports within cells such as Ca(II), Zn(II), Cu(II) and other physiologically important cations and anions, as well as biomolecules. The design of ligands for the selective recognition of suitable guests such as metal cations and anions has been an important goal of supramolecular chemistry. The term supramolecular analytical chemistry has recently been coined to describe the application of molecular sensors to analytical chemistry. Small molecule sensors are related to chemosensors. However, these are traditionally considered as being structurally simple molecules and reflect the need to form chelating molecules for complexing ions in analytical chemistry. (en)
  • 分子センサ(ぶんしセンサ)とは、分子を検出、識別するセンサ。 (ja)
dbo:thumbnail
dbo:wikiPageID
  • 9414430 (xsd:integer)
dbo:wikiPageLength
  • 42289 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1106091680 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • 分子センサ(ぶんしセンサ)とは、分子を検出、識別するセンサ。 (ja)
  • يمثل المستشعر الجزيئي (بالإنجليزية: molecular sensor)‏ أو المستشعر الكيميائي (كيموسنسور) (بالإنجليزية: chemosensor)‏ جزيئاً يتفاعل مع الأنالايت بهدف الحصول على تغيراً مؤغوباً أو متوقعاً. حيث تصاحب المستشعرات الجزيئية عملية التعرف الجزيئي (بالإنجليزية: molecular recognition)‏ مع صورةٍ ما من التقرير، ولذلك فإنه يمكن ملاحظة وجود الضيف. وقد صياغة مصطلح الكيمياء التحليلية الجزيئية الفائقة (بالإنجليزية: supramolecular analytical chemistry)‏ حديثاً لوصف تطبيقات المستشعرات الجزيئية في مجال الكيمياء التحليلية. (ar)
  • Ein Molekularer Sensor oder Chemosensor ist ein Molekül, das bei der Wechselwirkung mit einem Analyten eine detektierbare Änderung zeigt. Molekulare Sensoren kombinieren die molekulare Erkennung mit einer Form von Aufzeichnung, so dass beispielsweise bei einem Wirtmolekül die Anwesenheit eines Gastes beobachtet werden kann. Der Begriff Supramolekulare analytische Chemie wurde kürzlich verwendet, um die Anwendung molekularer Sensoren in der analytischen Chemie zu beschreiben. (de)
  • A molecular sensor or chemosensor is a molecular structure (organic or inorganic complexes) that is used for sensing of an analyte to produce a detectable change or a signal. The action of a chemosensor, relies on an interaction occurring at the molecular level, usually involves the continuous monitoring of the activity of a chemical species in a given matrix such as solution, air, blood, tissue, waste effluents, drinking water, etc. The application of chemosensors is referred to as chemosensing, which is a form of molecular recognition. All chemosensors are designed to contain a signalling moiety and a recognition moiety, that is connected either directly to each other or through a some kind of connector or a spacer. The signalling is often optically based electromagnetic radiation, givin (en)
rdfs:label
  • مستشعر جزيئي (ar)
  • Molekularer Sensor (de)
  • Molecular sensor (en)
  • 分子センサ (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:academicDiscipline of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License