An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics. If a sequence of real numbers converges to a real number , then by definition, for every real there is a natural number such that if then . A modulus of convergence is essentially a function that, given , returns a corresponding value of .

Property Value
dbo:abstract
  • In der reellen Analysis ist ein Konvergenzmodul eine Funktion, welche angibt, wie schnell eine konvergente Folge konvergiert. Konvergenzmoduln werden oft in der und konstruktiven Mathematik verwendet. Wenn eine Folge reeller Zahlen gegen eine reelle Zahl konvergiert, dann gibt es nach Definition für jedes reelle eine natürliche Zahl so, dass , falls . Ein Konvergenzmodul ist im Wesentlichen eine Funktion, die bei gegebenem einen entsprechenden Wert von berechnet. (de)
  • En analyse réelle un module de convergence est une fonction qui indique à quelle vitesse une séquence convergente converge. Ces modules sont souvent employés dans l'étude de l' et des mathématiques constructives. Si une suite de nombres réels (xi) converge vers un nombre réel x, alors par définition, pour tout réel il existe un entier naturel N tel que si i > N alors . Un module de convergence est une fonction qui, étant donné ε, renvoie une valeur correspondante de N. (fr)
  • In real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics. If a sequence of real numbers converges to a real number , then by definition, for every real there is a natural number such that if then . A modulus of convergence is essentially a function that, given , returns a corresponding value of . (en)
dbo:wikiPageID
  • 21536099 (xsd:integer)
dbo:wikiPageLength
  • 1759 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1089198925 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In der reellen Analysis ist ein Konvergenzmodul eine Funktion, welche angibt, wie schnell eine konvergente Folge konvergiert. Konvergenzmoduln werden oft in der und konstruktiven Mathematik verwendet. Wenn eine Folge reeller Zahlen gegen eine reelle Zahl konvergiert, dann gibt es nach Definition für jedes reelle eine natürliche Zahl so, dass , falls . Ein Konvergenzmodul ist im Wesentlichen eine Funktion, die bei gegebenem einen entsprechenden Wert von berechnet. (de)
  • En analyse réelle un module de convergence est une fonction qui indique à quelle vitesse une séquence convergente converge. Ces modules sont souvent employés dans l'étude de l' et des mathématiques constructives. Si une suite de nombres réels (xi) converge vers un nombre réel x, alors par définition, pour tout réel il existe un entier naturel N tel que si i > N alors . Un module de convergence est une fonction qui, étant donné ε, renvoie une valeur correspondante de N. (fr)
  • In real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics. If a sequence of real numbers converges to a real number , then by definition, for every real there is a natural number such that if then . A modulus of convergence is essentially a function that, given , returns a corresponding value of . (en)
rdfs:label
  • Konvergenzmodul (de)
  • Module de convergence (fr)
  • Modulus of convergence (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License