An Entity of Type: ethnic group, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, in the field of group theory, a modular subgroup is a subgroup that is a modular element in the lattice of subgroups, where the meet operation is defined by the intersection and the join operation is defined by the subgroup generated by the union of subgroups. By the modular property of groups, every quasinormal subgroup (that is, a subgroup that permutes with all subgroups) is modular. In particular, every normal subgroup is modular.

Property Value
dbo:abstract
  • In mathematics, in the field of group theory, a modular subgroup is a subgroup that is a modular element in the lattice of subgroups, where the meet operation is defined by the intersection and the join operation is defined by the subgroup generated by the union of subgroups. By the modular property of groups, every quasinormal subgroup (that is, a subgroup that permutes with all subgroups) is modular. In particular, every normal subgroup is modular. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 3593883 (xsd:integer)
dbo:wikiPageLength
  • 879 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 646463787 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, in the field of group theory, a modular subgroup is a subgroup that is a modular element in the lattice of subgroups, where the meet operation is defined by the intersection and the join operation is defined by the subgroup generated by the union of subgroups. By the modular property of groups, every quasinormal subgroup (that is, a subgroup that permutes with all subgroups) is modular. In particular, every normal subgroup is modular. (en)
rdfs:label
  • Modular subgroup (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License