An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the distance from the rotation center increases. It is also known as the Velikhov–Chandrasekhar instability or Balbus–Hawley instability in the literature, not to be confused with the electrothermal Velikhov instability. The MRI is of particular relevance in astrophysics where it is an important part of the dynamics in accretion disks.

Property Value
dbo:abstract
  • Magnetorotationsinstabilität (MRI, magnetische Rotationsinstabilität) oder Balbus-Hawley-Instabilität bezeichnet das Phänomen der Entstehung von Instabilität rotierender Fluide in der Umgebung kleiner Magnetfelder unter bestimmten Voraussetzungen mit der Folge, dass Materie ins Zentrum fällt. Die Instabilität sorgt in astrophysikalischen Akkretionsscheiben unter anderem für die Entstehung von Sternen und von Schwarzen Löchern, ist aber auch im Labor beobachtbar. Sie folgt aus den Grundgleichungen der Magnetohydrodynamik (MHD). (de)
  • The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the distance from the rotation center increases. It is also known as the Velikhov–Chandrasekhar instability or Balbus–Hawley instability in the literature, not to be confused with the electrothermal Velikhov instability. The MRI is of particular relevance in astrophysics where it is an important part of the dynamics in accretion disks. Gases or liquids containing mobile electrical charges are subject to the influence of a magnetic field. In addition to hydrodynamical forces such as pressure and gravity, an element of magnetized fluid also feels the Lorentz force where is the current density and is the magnetic field vector. If the fluid is in a state of differential rotation about a fixed origin, this Lorentz force can be surprisingly disruptive, even if the magnetic field is very weak. In particular, if the angular velocity of rotation decreases with radial distance the motion is unstable: a fluid element undergoing a small displacement from circular motion experiences a destabilizing force that increases at a rate which is itself proportional to the displacement. This process is known as the Magnetorotational Instability, or "MRI". In astrophysical settings, differentially rotating systems are very common and magnetic fields are ubiquitous. In particular, thin disks of gas are often found around forming stars or in binary star systems, where they are known as accretion disks. Accretion disks are also commonly present in the centre of galaxies, and in some cases can be extremely luminous: quasars, for example, are thought to originate from a gaseous disk surrounding a very massive black hole. Our modern understanding of the MRI arose from attempts to understand the behavior of accretion disks in the presence of magnetic fields; it is now understood that the MRI is likely to occur in a very wide variety of different systems. (en)
  • Магниторотационная неустойчивость (МРН) — это неустойчивость проводящей жидкости, вращающейся в магнитном поле. Устойчивость вращающейся жидкости без магнитного поля изучалась Куэттом (Couette, 1890), Маллоком (Mallock, 1896), Рэлеем (Rayleigh, 1917), Тейлором (Taylor, 1923). Локальное условие устойчивости вращающейся жидкости можно получить из следующих соображений. Выберем произвольный элемент жидкости (элемент объёма) в слое, расположенном на некотором расстоянии от оси вращения, и сместим по радиусу этот элемент. В новом положении при малой вязкости (то есть при большом числе Рейнольдса) элемент сохранит момент количества движения, пропорциональный его азимутальной скорости. Дальнейшее движение элемента по радиусу будет зависеть от соотношения между центробежной силой, действующей на него, и градиентом давления в этом слое. В равновесии градиент давления уравновешивает центробежную силу, действующую на окружающую жидкость. Если окружающая жидкость имеет меньший момент количества движения, то равновесный градиент давления окажется недостаточным для удержания в этом слое смещённого элемента и разовьётся неустойчивость. Таким образом, течение оказывается неустойчивым, если момент количества движения (на единицу массы) падает с радиусом Иное дело, если жидкость оказывается проводящей и помещена в магнитное поле. Для конкретности рассмотрим вращение хорошо проводящей жидкости (большое магнитное число Рейнольдса) вокруг оси, параллельной магнитному полю. При смещении элемента объёма магнитная силовая линия оказывается вмороженной в исходный слой и сохраняется угловая скорость элемента. Для устойчивости течения необходимо, чтобы угловая скорость не падала с радиусом (Велихов, 1959), то есть Это условие глобально не может быть выполнено, так как скорость где-то превысит скорость света. При этом критерий не зависит от величины магнитного поля. Магнитное поле дестабилизирует течение вплоть до некого предельного значения. Сильное магнитное поле за счёт натяжения магнитных силовых линий стабилизирует поток. В природе магниторотационная неустойчивость, по-видимому, наблюдается в жидком ядре Земли (Велихов, 2005), в звёздах, например в Солнце (Ruediger, 2004), в аккреционных дисках (Balbus и Hawley, 1991). В жидком ядре Земли источником неустойчивости может быть дифференциальное вращение, вызванное термической и химической конвекцией жидкого ядра. Дифференциальное вращение вызывает появление МРН, генерирующей магнитное поле. В свою очередь, поле ликвидирует дифференциальное вращение. В результате взаимодействие двух процессов, возможно, объясняет периодические срывы магнитного поля с характерным временем порядка 10000 лет, разделённые длительными периодами (сотни тысяч лет) стабильного существования поля. В Солнце МРН приводит к тому, что 70 процентов Солнца вращается как твёрдое тело (Ruediger). Проблема объяснения механизма падения вещества на притягивающий центр заключается в том, что при сохранении момента количества движения центробежная сила в аккреционном диске не позволит веществу упасть в центр. В 1973 году Н. И. Шакура и Р. А. Сюняев предложили модель сильно турбулентного аккреционного диска, вязкость в котором пропорциональна скорости звука и толщине диска. В 1991 году Бальбус (Balbus) и Хейли (Hawley) предположили, что магниторотационная неустойчивость вызывает эту турбулентность. МРН должна наблюдаться во вращающихся галактиках и других вращающихся объектах Вселенной. Если существует глобальное вращение Вселенной в целом, то оно должно приводить к появлению глобального магнитного поля. Экспериментально магниторотационная неустойчивость изучается сейчас в ряде лабораторий: Университет Мэриленда (D. Lathrop, Maryland, USA), ГНЦ РФ Физико-энергетический институт имени А. И. Лейпунского (ФЭИ) (Обнинск, Россия), Принстонский университет (Prinсеton, USA). Для наблюдения МРН необходимо достигнуть достаточно больших (существенно превосходящих единицу) магнитных чисел Рейнольдса, используя в качестве жидкости жидкий натрий. Самая крупная установка создана в Университете Мериленда (D. Lathrop, Maryland, USA) — вращающаяся сфера диаметром в 4 метра. Вторая проблема связана с созданием начального профиля скорости для изучения неустойчивости. Магнитное поле приводит к появлению вторичных течений, а высокие числа Рейнольдса приводят к возбуждению гидродинамической турбулентности. В ГНЦ РФ ФЭИ (Обнинск, Россия) вращение возбуждается током, протекающим поперёк магнитного поля, что может позволить исключить вторичные течения и гидродинамическую турбулентность. Можно надеяться на то, что в ближайшее время удастся экспериментально исследовать возникновение и развитие магнитогидродинамической турбулентности. (ru)
  • Magnetorotationsinstabilitet eller MRI är en fluidinstabilitet som uppstår, när vinkelhastigheten hos en magnetiserad fluid minskar med att avståndet från rotationscentrum ökar. Den kallas även Velikhov- Chandrasekhar-instabilitet eller Balbus-Hawley-instabilitet i litteraturen - inte att förväxla med den Velikhov-instabilitet som är en elektrotermisk instabilitet. MRI är särskilt relevant inom astrofysik, där det är en viktig del av dynamiken hos ackretionsskivor. Balbus och Hawley var först med att inse instabilitetens astrofysiska vikt och förklara dess fysiska mekanism. Deras originalartikel om upptäckten har nu över 1.600 citeringar. Den är till sin natur ett magnetohydrodynamiskt (MHD)fenomen, utan hydrodynamisk motsvarighet. (sv)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12010787 (xsd:integer)
dbo:wikiPageLength
  • 32726 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1121052928 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Magnetorotationsinstabilität (MRI, magnetische Rotationsinstabilität) oder Balbus-Hawley-Instabilität bezeichnet das Phänomen der Entstehung von Instabilität rotierender Fluide in der Umgebung kleiner Magnetfelder unter bestimmten Voraussetzungen mit der Folge, dass Materie ins Zentrum fällt. Die Instabilität sorgt in astrophysikalischen Akkretionsscheiben unter anderem für die Entstehung von Sternen und von Schwarzen Löchern, ist aber auch im Labor beobachtbar. Sie folgt aus den Grundgleichungen der Magnetohydrodynamik (MHD). (de)
  • The magnetorotational instability (MRI) is a fluid instability that causes an accretion disk orbiting a massive central object to become turbulent. It arises when the angular velocity of a conducting fluid in a magnetic field decreases as the distance from the rotation center increases. It is also known as the Velikhov–Chandrasekhar instability or Balbus–Hawley instability in the literature, not to be confused with the electrothermal Velikhov instability. The MRI is of particular relevance in astrophysics where it is an important part of the dynamics in accretion disks. (en)
  • Магниторотационная неустойчивость (МРН) — это неустойчивость проводящей жидкости, вращающейся в магнитном поле. Устойчивость вращающейся жидкости без магнитного поля изучалась Куэттом (Couette, 1890), Маллоком (Mallock, 1896), Рэлеем (Rayleigh, 1917), Тейлором (Taylor, 1923). Локальное условие устойчивости вращающейся жидкости можно получить из следующих соображений. Выберем произвольный элемент жидкости (элемент объёма) в слое, расположенном на некотором расстоянии от оси вращения, и сместим по радиусу этот элемент. В новом положении при малой вязкости (то есть при большом числе Рейнольдса) элемент сохранит момент количества движения, пропорциональный его азимутальной скорости. Дальнейшее движение элемента по радиусу будет зависеть от соотношения между центробежной силой, действующей на н (ru)
  • Magnetorotationsinstabilitet eller MRI är en fluidinstabilitet som uppstår, när vinkelhastigheten hos en magnetiserad fluid minskar med att avståndet från rotationscentrum ökar. Den kallas även Velikhov- Chandrasekhar-instabilitet eller Balbus-Hawley-instabilitet i litteraturen - inte att förväxla med den Velikhov-instabilitet som är en elektrotermisk instabilitet. MRI är särskilt relevant inom astrofysik, där det är en viktig del av dynamiken hos ackretionsskivor. Balbus och Hawley var först med att inse instabilitetens astrofysiska vikt och förklara dess fysiska mekanism. Deras originalartikel om upptäckten har nu över 1.600 citeringar. (sv)
rdfs:label
  • Magnetorotationsinstabilität (de)
  • Magnetorotational instability (en)
  • Магниторотационная неустойчивость (ru)
  • Magnetorotationsinstabilitet (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License