An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916). It is often used to derive binomial identities, most notably Dixon's identity.

Property Value
dbo:abstract
  • En matemàtiques, el teorema mestre de MacMahon (TMM) és un resultat en i àlgebra lineal. Va ser descobert per i provat en la seva monografia Anàlisi combinada (1916). S'utilitza sovint per obtenir identitats binomials, sobretot la identitat de Dixon. (ca)
  • In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916). It is often used to derive binomial identities, most notably Dixon's identity. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25567675 (xsd:integer)
dbo:wikiPageLength
  • 8704 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1115623318 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • En matemàtiques, el teorema mestre de MacMahon (TMM) és un resultat en i àlgebra lineal. Va ser descobert per i provat en la seva monografia Anàlisi combinada (1916). S'utilitza sovint per obtenir identitats binomials, sobretot la identitat de Dixon. (ca)
  • In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916). It is often used to derive binomial identities, most notably Dixon's identity. (en)
rdfs:label
  • Teorema mestre de MacMahon (ca)
  • MacMahon's master theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License