dbo:abstract
|
- A la topologia de les 3-varietats, el teorema del bucle és una generalització del Lema de Dehn. Aquest teorema va ser demostrat per l'any 1956, juntament amb el Lema de Dehn i el , amb la seva famosa tower's construction. Una versió és:
* Sigui una 3-varietat amb frontera. Sigui un mapeig continu amb no homotòpic a zero a , llavors hi ha un encaixament amb la mateixa propietat. Aquí és el disc (topològic) tancat de dimensió dos, per la qual cosa la vora és un cercle. La paraula bucle vol dir . (ca)
- En la topología de las 3-variedades el teorema del lasoes una generalización del Lema de Dehn. Este teorema fue demostrado por Christos Papakyriakopoulos, junto con el teorema de la esfera, en 1956 con su tower's construction. Una versión es:
* Sea una 3-variedad con frontera. Sea un mapeo continuo con no homotópico a cero en , entonces hay un encaje con la misma propiedad. Aquí es el disco (topológico) cerrado de dimensión dos, por lo que el borde es un círculo. (es)
- In mathematics, in the topology of 3-manifolds, the loop theorem is a generalization of Dehn's lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if for some 3-dimensional manifold M with boundary ∂M there is a map with not nullhomotopic in , then there is an embedding with the same property. The following version of the loop theorem, due to John Stallings, is given in the standard 3-manifold treatises (such as Hempel or Jaco): Let be a 3-manifold and let be a connected surface in . Let be a normal subgroup such that .Let be a continuous map such that and Then there exists an embedding such that and Furthermore if one starts with a map f in general position, then for any neighborhood U of the singularity set of f, we can find such a g with image lying inside the union of image of f and U. Stalling's proof utilizes an adaptation, due to Whitehead and Shapiro, of Papakyriakopoulos' "tower construction". The "tower" refers to a special sequence of coverings designed to simplify lifts of the given map. The same tower construction was used by Papakyriakopoulos to prove the sphere theorem (3-manifolds), which states that a nontrivial map of a sphere into a 3-manifold implies the existence of a nontrivial embedding of a sphere. There is also a version of Dehn's lemma for minimal discs due to Meeks and S.-T. Yau, which also crucially relies on the tower construction. A proof not utilizing the tower construction exists of the first version of the loop theorem. This was essentially done 30 years ago by Friedhelm Waldhausen as part of his solution to the word problem for Haken manifolds; although he recognized this gave a proof of the loop theorem, he did not write up a detailed proof. The essential ingredient of this proof is the concept of Haken hierarchy. Proofs were later written up, by , Marc Lackenby, and Iain Aitchison with Hyam Rubinstein. (en)
- Теорема о петле — обобщение леммы Дена. Доказана Христосом Папакирьякопулосом в 1956 году вместе с леммой Дена и теоремой о сфере. (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3191 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- A la topologia de les 3-varietats, el teorema del bucle és una generalització del Lema de Dehn. Aquest teorema va ser demostrat per l'any 1956, juntament amb el Lema de Dehn i el , amb la seva famosa tower's construction. Una versió és:
* Sigui una 3-varietat amb frontera. Sigui un mapeig continu amb no homotòpic a zero a , llavors hi ha un encaixament amb la mateixa propietat. Aquí és el disc (topològic) tancat de dimensió dos, per la qual cosa la vora és un cercle. La paraula bucle vol dir . (ca)
- En la topología de las 3-variedades el teorema del lasoes una generalización del Lema de Dehn. Este teorema fue demostrado por Christos Papakyriakopoulos, junto con el teorema de la esfera, en 1956 con su tower's construction. Una versión es:
* Sea una 3-variedad con frontera. Sea un mapeo continuo con no homotópico a cero en , entonces hay un encaje con la misma propiedad. Aquí es el disco (topológico) cerrado de dimensión dos, por lo que el borde es un círculo. (es)
- Теорема о петле — обобщение леммы Дена. Доказана Христосом Папакирьякопулосом в 1956 году вместе с леммой Дена и теоремой о сфере. (ru)
- In mathematics, in the topology of 3-manifolds, the loop theorem is a generalization of Dehn's lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if for some 3-dimensional manifold M with boundary ∂M there is a map with not nullhomotopic in , then there is an embedding with the same property. The following version of the loop theorem, due to John Stallings, is given in the standard 3-manifold treatises (such as Hempel or Jaco): be a continuous map such that and (en)
|
rdfs:label
|
- Teorema del bucle (ca)
- Teorema del lazo (es)
- Loop theorem (en)
- Теорема о петле (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |