An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, and more specifically in order theory, several different types of ordered set have been studied.They include: * Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise * Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. * Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be * Preorders, a generalization of partial orders allowing ties (represented as equivalences and distinct from incomparabilities) * Semiorders, partial orders determined by comparison of numerical values, in which values that are too close to each other are incomparable; a

Property Value
dbo:abstract
  • In mathematics, and more specifically in order theory, several different types of ordered set have been studied.They include: * Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise * Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. * Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be * Preorders, a generalization of partial orders allowing ties (represented as equivalences and distinct from incomparabilities) * Semiorders, partial orders determined by comparison of numerical values, in which values that are too close to each other are incomparable; a subfamily of partial orders with certain restrictions * Total orders, orderings that specify, for every two distinct elements, which one is less than the other * Weak orders, generalizations of total orders allowing ties (represented either as equivalences or, in strict weak orders, as transitive incomparabilities) * Well-orders, total orders in which every non-empty subset has a least element * Well-quasi-orderings, a class of preorders generalizing the well-orders (en)
  • Впорядко́вана множина́ — множина для будь-яких двох елементів , якої встановлено одне з наступних відношень порядку: або ( не перевищує ),або ( не перевищує ), з наступними властивостями: 1. * рефлексивність: будь-який елемент множини не перевершує самого себе; 2. * антисиметричність: якщо не перевершує , а не перевершує , то елементи і збігаються; 3. * транзитивність: якщо не перевершує , а не перевершує , то не перевершує . (uk)
dbo:wikiPageID
  • 203204 (xsd:integer)
dbo:wikiPageLength
  • 1558 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1077515675 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Впорядко́вана множина́ — множина для будь-яких двох елементів , якої встановлено одне з наступних відношень порядку: або ( не перевищує ),або ( не перевищує ), з наступними властивостями: 1. * рефлексивність: будь-який елемент множини не перевершує самого себе; 2. * антисиметричність: якщо не перевершує , а не перевершує , то елементи і збігаються; 3. * транзитивність: якщо не перевершує , а не перевершує , то не перевершує . (uk)
  • In mathematics, and more specifically in order theory, several different types of ordered set have been studied.They include: * Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise * Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. * Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be * Preorders, a generalization of partial orders allowing ties (represented as equivalences and distinct from incomparabilities) * Semiorders, partial orders determined by comparison of numerical values, in which values that are too close to each other are incomparable; a (en)
rdfs:label
  • List of order structures in mathematics (en)
  • Впорядкована множина (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License