dbo:abstract
|
- In combinatorial optimization, Lin–Kernighan is one of the best heuristics for solving the symmetric travelling salesman problem. It belongs to the class of local search algorithms, which take a tour (Hamiltonian cycle) as part of the input and attempt to improve it by searching in the neighbourhood of the given tour for one that is shorter, and upon finding one repeats the process from that new one, until encountering a local minimum. As in the case of the related 2-opt and 3-opt algorithms, the relevant measure of "distance" between two tours is the number of edges which are in one but not the other; new tours are built by reassembling pieces of the old tour in a different order, sometimes changing the direction in which a sub-tour is traversed. Lin–Kernighan is adaptive and has no fixed number of edges to replace at a step, but favours small numbers such as 2 or 3. (en)
- En optimisation combinatoire, l'heuristique de Lin-Kernighan est une heuristique pour le problème du voyageur de commerce. L'algorithme consiste à échanger itérativement un certain nombre d'arêtes à partir d'une solution donnée pour trouver une solution de meilleur coût. (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 18774 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- En optimisation combinatoire, l'heuristique de Lin-Kernighan est une heuristique pour le problème du voyageur de commerce. L'algorithme consiste à échanger itérativement un certain nombre d'arêtes à partir d'une solution donnée pour trouver une solution de meilleur coût. (fr)
- In combinatorial optimization, Lin–Kernighan is one of the best heuristics for solving the symmetric travelling salesman problem. It belongs to the class of local search algorithms, which take a tour (Hamiltonian cycle) as part of the input and attempt to improve it by searching in the neighbourhood of the given tour for one that is shorter, and upon finding one repeats the process from that new one, until encountering a local minimum. As in the case of the related 2-opt and 3-opt algorithms, the relevant measure of "distance" between two tours is the number of edges which are in one but not the other; new tours are built by reassembling pieces of the old tour in a different order, sometimes changing the direction in which a sub-tour is traversed. Lin–Kernighan is adaptive and has no fixed (en)
|
rdfs:label
|
- Lin–Kernighan heuristic (en)
- Heuristique de Lin-Kernighan (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |