dbo:abstract
|
- In mathematics, the Lehmer–Schur algorithm (named after Derrick Henry Lehmer and Issai Schur) is a root-finding algorithm for complex polynomials, extending the idea of enclosing roots like in the one-dimensional bisection method to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots. (en)
- L'algorithme de Lehmer-Schur (nommée d'après Derrick Lehmer et Issai Schur) permet de trouver les zéros d'une fonction holomorphe définie sur un rectangle du plan complexe. Il étend la méthode de dichotomie, utilisée en dimension 1. Le rectangle est divisé en quatre sous-rectangles de même taille. On calcule l'indice du bord de chaque sous-rectangle, en utilisant le principe de l'argument. L'indice donne le nombre de zéros, comptés avec multiplicité, à l'intérieur de chaque sous-rectangle. L'algorithme est ensuite appliqué récursivement à chacun des sous-rectangles dont l'indice est non nul. La récursion prend fin lorsque les rectangles sont suffisamment petits pour que l'approximation obtenue sur les zéros soit assez précise ou lorsqu'on peut appliquer un autre algorithme pour raffiner l'approximation trouvée. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9684 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Lehmer–Schur algorithm (named after Derrick Henry Lehmer and Issai Schur) is a root-finding algorithm for complex polynomials, extending the idea of enclosing roots like in the one-dimensional bisection method to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots. (en)
- L'algorithme de Lehmer-Schur (nommée d'après Derrick Lehmer et Issai Schur) permet de trouver les zéros d'une fonction holomorphe définie sur un rectangle du plan complexe. Il étend la méthode de dichotomie, utilisée en dimension 1. Le rectangle est divisé en quatre sous-rectangles de même taille. On calcule l'indice du bord de chaque sous-rectangle, en utilisant le principe de l'argument. L'indice donne le nombre de zéros, comptés avec multiplicité, à l'intérieur de chaque sous-rectangle. (fr)
|
rdfs:label
|
- Algorithme de Lehmer-Schur (fr)
- Lehmer–Schur algorithm (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |