An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Lehmer–Schur algorithm (named after Derrick Henry Lehmer and Issai Schur) is a root-finding algorithm for complex polynomials, extending the idea of enclosing roots like in the one-dimensional bisection method to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots.

Property Value
dbo:abstract
  • In mathematics, the Lehmer–Schur algorithm (named after Derrick Henry Lehmer and Issai Schur) is a root-finding algorithm for complex polynomials, extending the idea of enclosing roots like in the one-dimensional bisection method to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots. (en)
  • L'algorithme de Lehmer-Schur (nommée d'après Derrick Lehmer et Issai Schur) permet de trouver les zéros d'une fonction holomorphe définie sur un rectangle du plan complexe. Il étend la méthode de dichotomie, utilisée en dimension 1. Le rectangle est divisé en quatre sous-rectangles de même taille. On calcule l'indice du bord de chaque sous-rectangle, en utilisant le principe de l'argument. L'indice donne le nombre de zéros, comptés avec multiplicité, à l'intérieur de chaque sous-rectangle. L'algorithme est ensuite appliqué récursivement à chacun des sous-rectangles dont l'indice est non nul. La récursion prend fin lorsque les rectangles sont suffisamment petits pour que l'approximation obtenue sur les zéros soit assez précise ou lorsqu'on peut appliquer un autre algorithme pour raffiner l'approximation trouvée. (fr)
dbo:wikiPageID
  • 2711954 (xsd:integer)
dbo:wikiPageLength
  • 9684 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032608304 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the Lehmer–Schur algorithm (named after Derrick Henry Lehmer and Issai Schur) is a root-finding algorithm for complex polynomials, extending the idea of enclosing roots like in the one-dimensional bisection method to the complex plane. It uses the Schur-Cohn test to test increasingly smaller disks for the presence or absence of roots. (en)
  • L'algorithme de Lehmer-Schur (nommée d'après Derrick Lehmer et Issai Schur) permet de trouver les zéros d'une fonction holomorphe définie sur un rectangle du plan complexe. Il étend la méthode de dichotomie, utilisée en dimension 1. Le rectangle est divisé en quatre sous-rectangles de même taille. On calcule l'indice du bord de chaque sous-rectangle, en utilisant le principe de l'argument. L'indice donne le nombre de zéros, comptés avec multiplicité, à l'intérieur de chaque sous-rectangle. (fr)
rdfs:label
  • Algorithme de Lehmer-Schur (fr)
  • Lehmer–Schur algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License