dbo:abstract
|
- Konzewitschs Formel (auch Konzewitschs Quantisierungsformel) ist eine Formel der mathematischen Physik. Sie beschreibt wie lokal ein Sternprodukt auf einer endlich-dimensionalen Poisson-Mannigfaltigkeit konstruiert werden kann. Dadurch entsteht eine Deformationsquantisierung der Poisson-Algebra. Die Formel stammt von dem Mathematiker Maxim Konzewitsch. (de)
- In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich. (en)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6301 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Konzewitschs Formel (auch Konzewitschs Quantisierungsformel) ist eine Formel der mathematischen Physik. Sie beschreibt wie lokal ein Sternprodukt auf einer endlich-dimensionalen Poisson-Mannigfaltigkeit konstruiert werden kann. Dadurch entsteht eine Deformationsquantisierung der Poisson-Algebra. Die Formel stammt von dem Mathematiker Maxim Konzewitsch. (de)
- In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich. (en)
|
rdfs:label
|
- Konzewitschs Formel (de)
- Kontsevich quantization formula (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |