An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In operator algebra, the Koecher–Vinberg theorem is a reconstruction theorem for real Jordan algebras. It was proved independently by Max Koecher in 1957 and Ernest Vinberg in 1961. It provides a one-to-one correspondence between formally real Jordan algebras and so-called domains of positivity. Thus it links operator algebraic and convex order theoretic views on state spaces of physical systems.

Property Value
dbo:abstract
  • En algèbre d'opérateurs, le théorème de Koecher-Vinberg est un théorème de reconstruction pour les algèbres de Jordan réelles. Il a été prouvé indépendamment par Max Koecher en 1957 et Ernest Vinberg en 1961. Il permet d'établir une bijection entre les algèbres de Jordan formellement réelles et des objets appelés « domaines de positivité ». (fr)
  • In operator algebra, the Koecher–Vinberg theorem is a reconstruction theorem for real Jordan algebras. It was proved independently by Max Koecher in 1957 and Ernest Vinberg in 1961. It provides a one-to-one correspondence between formally real Jordan algebras and so-called domains of positivity. Thus it links operator algebraic and convex order theoretic views on state spaces of physical systems. (en)
dbo:wikiPageID
  • 37016909 (xsd:integer)
dbo:wikiPageLength
  • 2913 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1017640200 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En algèbre d'opérateurs, le théorème de Koecher-Vinberg est un théorème de reconstruction pour les algèbres de Jordan réelles. Il a été prouvé indépendamment par Max Koecher en 1957 et Ernest Vinberg en 1961. Il permet d'établir une bijection entre les algèbres de Jordan formellement réelles et des objets appelés « domaines de positivité ». (fr)
  • In operator algebra, the Koecher–Vinberg theorem is a reconstruction theorem for real Jordan algebras. It was proved independently by Max Koecher in 1957 and Ernest Vinberg in 1961. It provides a one-to-one correspondence between formally real Jordan algebras and so-called domains of positivity. Thus it links operator algebraic and convex order theoretic views on state spaces of physical systems. (en)
rdfs:label
  • Satz von Koecher-Vinberg (de)
  • Théorème de Koecher-Vinberg (fr)
  • Koecher–Vinberg theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License